Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Imeta ; 3(2): e181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882496

ABSTRACT

Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.

2.
Folia Histochem Cytobiol ; 61(4): 217-230, 2023.
Article in English | MEDLINE | ID: mdl-38258843

ABSTRACT

INTRODUCTION: Ischemic stroke (IS) is a leading cause of disability and mortality worldwide. Several studies have demonstrated the involvement of microRNAs (miRNAs) in brain diseases. miRNA-192-5p is a regulatory molecule in neurodegenerative diseases and its expression was found to be significantly downregulated in the whole blood samples of IS patients, but the specific role of miRNA-192-5p in IS not fully understood. Here, we investigated the role of miRNA-192-5p in a murine model of acute cerebral injury after IS. MATERIAL AND METHODS: Male C57BL/6J mice received an intracerebroventricular (i.c.v.) injection of agomir-192-5p or antagomir-192-5p 2 h before middle cerebral artery occlusion (MCAO). Infarct volume was assessed by 2,3,5 triphenyltetrazolium chloride (TTC) staining. Brain slices were subjected to Fluoro-Jade B, TUNEL, and immunofluorescence stainings. Contents of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) were measured using enzyme-linked immunosorbent assay (ELISA) kits. In vitro, murine microglial BV-2 cells were subjected to oxygen-glucose deprivation (OGD), and the contents of pro-inflammatory cytokines were measured in cell lysates. RESULTS: miRNA-192-5p was downregulated in the ischemic penumbra of the cerebral cortex. Pretreatment with agomir-192-5p attenuated neurological deficits and reduced cerebral edema and infarct volume in MCAO mice. Agomir-192-5p-treated animals had fewer degenerating and apoptotic neurons in the ischemic penumbra. Additionally, agomir-192-5p significantly suppressed neuroinflammation as evidenced by decreased immunostaining for GFAP and Iba1 and decreased levels of pro-inflammatory cytokines. Antagomir-192-5p pretreatment showed the opposite effect. Furthermore, dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) was identified as a target gene of miRNA-192-5p, and the elevated Dyrk1a expression in the ischemic penumbra was markedly reduced by agomir-192-5p. Dyrk1a overexpression in BV-2 microglial cells impaired miRNA-192-5p-mediated inhibition of OGD-induced activation of BV-2 microglial cells. Opposite results were obtained using miRNA-192-5p inhibitor and Dyrk1a siRNA. CONCLUSIONS: We found that intracerebroventricular administration of miRNA-192-5p before MCAO attenuatedacute cerebral injury by suppressing neuronal apoptosis and neuroinflammation in mice, and these protective effects might be mediated by downregulation of Dyrk1a. This study would help identify novel therapeutic targets for IS.


Subject(s)
Dyrk Kinases , Infarction, Middle Cerebral Artery , MicroRNAs , Animals , Male , Mice , Antagomirs , Apoptosis , Cytokines , Mice, Inbred C57BL , MicroRNAs/genetics , Neuroinflammatory Diseases , Dyrk Kinases/genetics
3.
Bioengineered ; 12(2): 11490-11505, 2021 12.
Article in English | MEDLINE | ID: mdl-34873976

ABSTRACT

In recent years, a steady increase has been detected in the incidence of acute cerebral infarction (ACI). ACI is caused by blood flow disruption, leading to high disability and mortality rates. Understanding the underlying molecular mechanisms is critical toward developing effective therapeutic approaches. Circular RNAs (circRNAs) are an important class of non-coding RNAs, which have been implicated in several molecular pathways, and their dysregulation has been described in several disease conditions. Here, we set out to explore the possible regulatory role of circRNAs in ischemic stroke and study their molecular function in disease. First, we applied high-throughput sequencing techniques to identify the differential changes of plasma circRNAs expression in patients with acute cerebral infarction. Next, we used GO and KEGG pathway analysis to predict the function of differentially expressed circRNAs. Moreover, we have assessed the possible interaction between the identified differentially expressed circRNAs and miRNAs. Finally, we have selected and validated five downregulated circRNAs by RT-qPCR. Together, the results of this study provide evidence that circRNAs are potential biomarkers for early diagnosis of cerebral infarction and have to be considered as targets for drug treatment.


Subject(s)
Brain Injuries/genetics , Cerebral Infarction/genetics , Computational Biology , Gene Expression Regulation , RNA, Circular/genetics , Acute Disease , Down-Regulation/genetics , Female , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Up-Regulation/genetics
4.
Oncol Rep ; 39(3): 1011-1022, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29399702

ABSTRACT

Glioma is the most aggressive and malignant primary brain tumor in adults. In the present study, we identified a vital oncoprotein, capping actin protein, gelsolin-like (CapG), and investigated its roles in the prognosis, proliferation and metastasis in glioma. The mRNA and protein levels of CapG were significantly increased in human glioma, and higher CapG expression was an independent prognostic factor for predicting unfavorable prognosis. The expression level of CapG was found to be associated with several common molecular features of glioblastoma (GBM; WHO grade IV glioma) in The Cancer Genome Atlas (TCGA) cohort. When analyzing the prognosis of GBM patients according to these molecular features, we observed that the prognostic value of CapG was affected by amplification of CDK6 or EGFR. However, overexpression of CapG markedly promoted cell growth in vitro, while depletion of CapG significantly inhibited cell proliferation by blocking the cell cycle in G1/S transition. Moreover, CapG manipulation in glioma cell lines U87 and U251 showed CapG-dependent cellular migration and invasiveness. These data suggest that CapG may serve as a prognostic biomarker with potentially important therapeutic implications for glioma.


Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Microfilament Proteins/metabolism , Nuclear Proteins/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Cell Line, Tumor , Cell Movement , Cell Proliferation , G1 Phase Cell Cycle Checkpoints , Gene Expression , Glioma/mortality , Glioma/pathology , Glioma/secondary , Humans , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Neoplasm Invasiveness , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Prognosis
5.
Huan Jing Ke Xue ; 33(4): 1331-8, 2012 Apr.
Article in Chinese | MEDLINE | ID: mdl-22720586

ABSTRACT

Investigations were conducted on the effects of intensive application of chemical fertilizers in crop production on soil nitrifier communities and the relationship between nitrifier communities and soil nitrification ability. Two series of vegetable soils were selected from Huangxing, Changsha, reflecting continuous vegetable cropping with about 20 years and new vegetable field with only about 2 years vegetable growing history. In each series five independent topsoils (0-20 cm) were sampled and each soil was a mixture of 10 cores randomly taken in the same field. Terminal restriction fragment length polymorphism (T-RFLP) and quantity PCR (Q-PCR) were used to determine the composition and abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities. Results indicated that long-term and continuous vegetable cropping obviously changed the compositions of both AOB and AOA amoA gene, soil pH and Olsen-P content were the dominant factors affecting the composition of AOB amoA. In the vegetable soils, although the copy number of AOA amoA gene was about 5 times higher than AOB amoA gene, no significant correlation was detected between AOA amoA gene abundance and soil nitrification rate. It was not sure whether long-term and continuous vegetable cropping could shift the abundance of AOB and AOA, but it resulted in the enrichment of some dominant AOB species and increase of soil nitrification potential (PNF).


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Bacteria/metabolism , Soil Microbiology , Vegetables/growth & development , Agriculture/methods , Archaea/genetics , Archaea/growth & development , Bacteria/genetics , Bacteria/growth & development , Fertilizers , Nitrification , Oxidation-Reduction , Population Dynamics , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...