Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(8): e42682, 2012.
Article in English | MEDLINE | ID: mdl-22916147

ABSTRACT

The study of somatic genetic alterations in tumors contributes to the understanding and management of cancer. Genetic alterations, such us copy number or copy neutral changes, generate allelic imbalances (AIs) that can be determined using polymorphic markers. Here we report the development of a simple set of calculations for analyzing microsatellite multiplex PCR data from control-tumor pairs that allows us to obtain accurate information not only regarding the AI status of tumors, but also the percentage of tumor-infiltrating normal cells, the locus copy-number status and the mechanism involved in AI. We validated this new approach by re-analyzing a set of Neurofibromatosis type 1-associated dermal neurofibromas and comparing newly generated data with results obtained for the same tumors in a previous study using MLPA, Paralog Ratio Analysis and SNP-array techniques.Microsatellite multiplex PCR analysis (MMPA) should be particularly useful for analyzing specific regions of the genome containing tumor suppressor genes and also for determining the percentage of infiltrating normal cells within tumors allowing them to be sorted before they are analyzed by more expensive techniques.


Subject(s)
Alleles , Gene Dosage , Microsatellite Repeats/genetics , Multiplex Polymerase Chain Reaction/methods , Neoplasms/genetics , Humans , Neoplasms/pathology
2.
Hum Mutat ; 32(1): 78-90, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21031597

ABSTRACT

Dermal neurofibromas (dNFs) are benign tumors of the peripheral nervous system typically associated with Neurofibromatosis type 1 (NF1) patients. Genes controlling the integrity of the DNA are likely to influence the number of neurofibromas developed because dNFs are caused by somatic mutational inactivation of the NF1 gene, frequently evidenced by loss of heterozygosity (LOH). We performed a comprehensive analysis of the prevalence and mechanisms of LOH in dNFs. Our study included 518 dNFs from 113 patients. LOH was detected in 25% of the dNFs (N = 129). The most frequent mechanism causing LOH was mitotic recombination, which was observed in 62% of LOH-tumors (N = 80), and which does not reduce the number of NF1 gene copies. All events were generated by a single crossover located between the centromere and the NF1 gene, resulting in isodisomy of 17q. LOH due to the loss of the NF1 gene accounted for a 38% of dNFs with LOH (N = 49), with deletions ranging in size from ∼80 kb to ∼8 Mb within 17q. In one tumor we identified the first example of a neurofibroma-associated second-hit type-2 NF1 deletion. Analysis of the prevalence of mechanisms causing LOH in dNFs in individual patients (possibly under genetic control) will elucidate whether there exist interindividual variation.


Subject(s)
Loss of Heterozygosity/genetics , Neurofibroma/genetics , Neurofibromatosis 1/genetics , Cell Culture Techniques , Chromosome Breakpoints , Chromosome Deletion , DNA Copy Number Variations/genetics , Gene Frequency/genetics , Humans
3.
BMC Bioinformatics ; 10: 158, 2009 May 23.
Article in English | MEDLINE | ID: mdl-19463186

ABSTRACT

BACKGROUND: Integration and exploration of data obtained from genome wide monitoring technologies has become a major challenge for many bioinformaticists and biologists due to its heterogeneity and high dimensionality. A widely accepted approach to solve these issues has been the creation and use of controlled vocabularies (ontologies). Ontologies allow for the formalization of domain knowledge, which in turn enables generalization in the creation of querying interfaces as well as in the integration of heterogeneous data, providing both human and machine readable interfaces. RESULTS: We designed and implemented a software tool that allows investigators to create their own semantic model of an organism and to use it to dynamically integrate expression data obtained from DNA microarrays and other probe based technologies. The software provides tools to use the semantic model to postulate and validate of hypotheses on the spatial and temporal expression and function of genes. In order to illustrate the software's use and features, we used it to build a semantic model of rice (Oryza sativa) and integrated experimental data into it. CONCLUSION: In this paper we describe the development and features of a flexible software application for dynamic gene expression data annotation, integration, and exploration called Orymold. Orymold is freely available for non-commercial users from http://www.oryzon.com/media/orymold.html.


Subject(s)
Genomics/methods , Oligonucleotide Array Sequence Analysis/methods , Oryza/genetics , Software , Vocabulary, Controlled , Databases, Genetic , Gene Expression , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Semantics , User-Computer Interface
4.
BMC Genomics ; 9: 508, 2008 Oct 30.
Article in English | MEDLINE | ID: mdl-18973667

ABSTRACT

BACKGROUND: The Senegalese sole, Solea senegalensis, is a highly prized flatfish of growing commercial interest for aquaculture in Southern Europe. However, despite the industrial production of Senegalese sole being hampered primarily by lack of information on the physiological mechanisms involved in reproduction, growth and immunity, very limited genomic information is available on this species. RESULTS: Sequencing of a S. senegalensis multi-tissue normalized cDNA library, from adult tissues (brain, stomach, intestine, liver, ovary, and testis), larval stages (pre-metamorphosis, metamorphosis), juvenile stages (post-metamorphosis, abnormal fish), and undifferentiated gonads, generated 10,185 expressed sequence tags (ESTs). Clones were sequenced from the 3'-end to identify isoform specific sequences. Assembly of the entire EST collection into contigs gave 5,208 unique sequences of which 1,769 (34%) had matches in GenBank, thus showing a low level of redundancy. The sequence of the 5,208 unigenes was used to design and validate an oligonucleotide microarray representing 5,087 unique Senegalese sole transcripts. Finally, a novel interactive bioinformatic platform, Soleamold, was developed for the Senegalese sole EST collection as well as microarray and ISH data. CONCLUSION: New genomic resources have been developed for S. senegalensis, an economically important fish in aquaculture, which include a collection of expressed genes, an oligonucleotide microarray, and a publicly available bioinformatic platform that can be used to study gene expression in this species. These resources will help elucidate transcriptional regulation in wild and captive Senegalese sole for optimization of its production under intensive culture conditions.


Subject(s)
Flatfishes/genetics , Genome/genetics , Genomics/methods , Animals , Base Sequence , Computational Biology/methods , Expressed Sequence Tags , Gene Library , Oligonucleotide Array Sequence Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL