Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Neural Regen Res ; 20(2): 533-547, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819065

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202502000-00030/figure1/v/2024-05-28T214302Z/r/image-tiff In patients with Alzheimer's disease, gamma-glutamyl transferase 5 (GGT5) expression has been observed to be downregulated in cerebrovascular endothelial cells. However, the functional role of GGT5 in the development of Alzheimer's disease remains unclear. This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer's disease, as well as the underlying mechanism. We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer's disease (Aß1-42-treated hCMEC/D3 and bEnd.3 cells), as well as in the APP/PS1 mouse model. Additionally, injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits. Interestingly, increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-ß in the brains of APP/PS1 mice. This effect may be attributable to inhibition of the expression of ß-site APP cleaving enzyme 1, which is mediated by nuclear factor-kappa B. Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer's disease pathogenesis, and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice. These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer's disease.

2.
J Orthop Surg Res ; 19(1): 346, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858737

ABSTRACT

BACKGROUND: Despite fractures of Isolated Weber B being prevalent, there is a lack of clarity regarding the relative effectiveness of surgical versus conservative treatment. This systematic review and meta-analysis aimed to investigate the clinical effects and complications of surgical versus conservative treatment of the Isolated Weber B ankle fractures. METHODS: This study involved thorough searches across multiple electronic databases, including PubMed, Cochrane, Embase, and Web of Science, to identify all relevant publications on Isolated Weber B ankle fractures repaired through surgical versus conservative treatment. Through a comprehensive meta-analysis, several outcomes were evaluated, including post-operative function, complications and reoperation rate. RESULT: Six articles involving 818 patients who met the inclusion criteria. Among these participants, 350 were male and 636 were female. 651 patients received conservative treatment, while 396 underwent surgical intervention. The findings indicate no significant differences in OMAS, FAOQ, PCS, MCS scores, and return to work between surgical and non-surgical treatments for isolated Weber B ankle fractures. However, compared with surgical treatment, non-surgical treatment has a higher AOFAS score(MD = -5.31, 95% CI = [-9.06, -1.55], P = 0.20, I2 = 39%), lower VAS score(MD = 0.72, 95% CI = [0.33, 1.10], P = 0.69, I2 = 0%), lower complication rate (RR = 3.06, 95% CI = [1.58, 6.01], P = 0.05, I2 = 54%), and lower reoperation rate(RR = 8.40, 95% CI = [1.57, 45.06], P = 0.05, I2 = 67%).


Subject(s)
Ankle Fractures , Humans , Ankle Fractures/therapy , Ankle Fractures/surgery , Treatment Outcome , Conservative Treatment/methods , Female , Male , Reoperation/statistics & numerical data , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Adult
3.
Gene ; 927: 148713, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906394

ABSTRACT

INTRODUCTION: Long non-coding RNAs (lncRNAs) dysregulation is key in the pathogenesis of systemic lupus erythematosus (SLE), but the role of exosomal lncRNAs in SLE has not been well studied. We elucidated the profiles of plasma exosomal lncRNAs expression in patients with SLE and predictd their potential clinical significance in SLE. METHODS: In the screening stage, six newly diagnosed and untreated patients with SLE and six healthy controls were examined by high-throughput sequencing technology, and differential exosomal lncRNA profiles were constructed. In the validation phase, two differentially selected exosomal lncRNAs from 20 patients each with active and stable SLE and 20 healthy controls were verified with RT-qPCR. The correlation between the selected exosomal lncRNAs and SLE clinical indicators was examined. The diagnostic value of the selected exosomal lncRNAs in SLE was analyzed by the receiver operator characteristic (ROC) curve. RESULTS: Exosomes were successfully extracted from the patients and controls. Sequencing-phase sequencing demonstrated 528 upregulated lncRNAs and 7491 downregulated lncRNAs. In the validation stage, exosomal LINC00667 and DANCR were significantly upregulated in the patients, and positively correlated with Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Exosomal DANCR expression between the active and stable SLE patients was different. The area under the curve(AUC) of exosomal LINC00667 and DANCR for SLE diagnosis was 0.815 and 0.759, respectively. CONCLUSIONS: Exosomal LINC00667 and DANCR were upregulated in SLE, and might be new biomarkers thereof. Exosomal DANCR was associated with SLE activity.

4.
J Agric Food Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841893

ABSTRACT

Alzheimer's disease (AD), one of the neurodegenerative disorders, is highly correlated with the abnormal hyperphosphorylation of Tau and aggregation of ß-amyloid (Aß). Oxidative stress, neuroinflammation, and abnormal autophagy are key drivers of AD and how they contribute to neuropathology remains largely unknown. The flavonoid compound pongamol is reported to possess a variety of pharmacological activities, such as antioxidant, antibacterial, and anti-inflammatory. This study investigated the neuroprotective effect and its mechanisms of pongamol in lipopolysaccharide (LPS)-induced BV2 cells, d-galactose/sodium nitrite/aluminum chloride (d-gal/NaNO2/AlCl3)-induced AD mice, and Caenorhabditis elegans models. Our research revealed that pongamol reduced the release of inflammatory factors IL-1ß, TNF-α, COX-2, and iNOS in LPS-induced BV2 cells. Pongamol also protected neurons and significantly restored memory function, inhibited Tau phosphorylation, downregulated Aß aggregation, and increased oxidoreductase activity in the hippocampus of AD mice. In addition, pongamol reversed the nuclear transfer of NF-κB and increased the levels of Beclin 1 and LC3 II/LC3 I. Most importantly, the anti-inflammatory and promoter autophagy effects of pongamol may be related to the regulation of the Akt/mTOR signaling pathway. In summary, these results showed that pongamol has a potential neuroprotective effect, which greatly enriched the research on the pharmacological activity of pongamol for improving AD.

5.
Front Pharmacol ; 15: 1338471, 2024.
Article in English | MEDLINE | ID: mdl-38698812

ABSTRACT

Objective: The aim of this study is to uncover the traditional Chinese medicine (TCM) treatments for chronic gastritis and their potential targets and pathways involved in the "inflammation-cancer" conversion in four stages. These findings can provide further support for future research into TCM and its active components. Materials and methods: The literature search encompassed PubMed, Web of Science, Google Scholar, CNKI, WanFang, and VIP, employing keywords such as "chronic gastritis", "gastric cancer", "traditional Chinese medicine", "medicinal herb", "Chinese herb", and "natural plant". Results: Herbal remedies may regulate the signaling pathways linked to the advancement of chronic gastritis. Under the multi-target and multi-pathway independent or combined reaction, the inflammatory microenvironment may be enhanced, leading to repair of damaged gastric mucosal cells, buffering the progress of mucosal atrophic degeneration via the decrease of inflammatory factor expression, inhibition of oxidative stress-induced damage, facilitation of microvascular neovascularization in the gastric mucosa and regulation of the processes of gastric mucosal cell differentiation and proliferation. Simultaneously, the decreased expression of inflammatory factors may impact the expression of associated oncogenes and regulate the malignant proliferation of cells, thereby achieving the treatment and prevention objectives of gastric cancer through the reduction of cell metastasis and apoptosis. Conclusion: Chinese medicine formulations and individual drugs can be utilised at various stages of the "inflammation-cancer" progression of chronic gastritis to prevent and treat gastric cancer in a multi-level, multi-targeted, and multi-directional fashion. This can provide guidance for the accurate application of medicines during different stages of "inflammation-cancer" transformation. New insights into the mechanism of inflammation-cancer transformation and the development of novel drugs for chronic gastritis can be gained through an extensive investigation of TCM treatment in this condition.

6.
Mol Neurobiol ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483657

ABSTRACT

Despite tremendous advances in modern medicine, effective prevention or therapeutic strategies for age-related neurodegenerative diseases such as Alzheimer's disease (AD) remain limited. Growing evidence now suggests that oxidative stress and apoptosis are increasingly associated with AD as promising therapeutic targets. Pongamol, a flavonoid, is the main constituent of pongamia pinnata and possesses a variety of pharmacological activities such as antioxidant, anti-aging and anti-inflammatory. In the present study, we investigated the antioxidant effects and mechanisms of pongamol in H2O2-induced PC12 cells and Caenorhabditis elegans (C. elegans). Our findings revealed that pongamol reduced cellular damage and apoptosis in H2O2-induced PC12 cells. Furthermore, pongamol reduced levels of apoptosis-related proteins Bax, Cyto C, Cleaved Caspase-3, and Cleaved PARP1, and increased the level of anti-apoptotic protein Bcl-2. Pongamol also effectively attenuated the level of oxidative stress markers such as glutathione (GSH) and reactive oxygen species (ROS) in H2O2-induced PC12 cells. Additionally, pongamol possessed antioxidant activity in H2O2-induced PC12 cells through the MAPKs/Nrf2 signaling pathway. Furthermore, pongamol exerted neuroprotective and anti-aging effects in C. elegans. All together, these results suggested that pongamol has a potential neuroprotective effect through the modulation of MAPKs/Nrf2 signaling pathway.

7.
Nat Commun ; 15(1): 2649, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531862

ABSTRACT

Hydrogen peroxide photosynthesis suffers from insufficient catalytic activity due to the high energy barrier of hydrogen extraction from H2O. Herein, we report that mechanochemically synthesized keto-form anthraquinone covalent organic framework which is able to directly synthesize H2O2 (4784 µmol h-1 g-1 at λ > 400 nm) from oxygen and alkaline water (pH = 13) in the absence of any sacrificial reagents. The strong alkalinity resulted in the formation of OH-(H2O)n clusters in water, which were adsorbed on keto moieties within the framework and then dissociated into O2 and active hydrogen, because the energy barrier of hydrogen extraction was largely lowered. The produced hydrogen reacted with anthraquinone to generate anthrahydroquinone, which was subsequently oxidized by O2 to produce H2O2. This study ultimately sheds light on the importance of hydrogen extraction from H2O for H2O2 photosynthesis and demonstrates that H2O2 synthesis is achievable under alkaline conditions.

8.
J Hazard Mater ; 467: 133753, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38350321

ABSTRACT

Peroxydisulfate (PDS)-based Fenton-like reactions are promising advanced oxidation processes (AOPs) to degrade recalcitrant organic water pollutants. Current research predominantly focuses on augmenting the generation of reactive species (e.g., surface-activated PDS complexes (PDS*) to improve treatment efficiency, but overlooks the potential benefits of enhancing the reactivity of these species. Here, we enhanced PDS* generation and reactivity by incorporating Zn into CuO catalyst lattice, which resulted in 99% degradation of 4-chlorophenol within only 10 min. Zn increased PDS* generation by nearly doubling PDS adsorption while maintaining similar PDS to PDS* conversion efficiency, and induced higher PDS* reactivity than the common catalyst CuO, as indicated by a 4.1-fold larger slope between adsorbed PDS and open circuit potential of a catalytic electrode. Cu-O-Zn formation upshifts the d-band center of Cu sites and lowers the energy barrier for PDS adsorption and sulfate desorption, resulting in enhanced PDS* generation and reactivity. Overall, this study informs strategies to enhance PDS* reactivity and design highly active catalysts for efficient AOPs.

10.
J Hazard Mater ; 465: 133344, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38147749

ABSTRACT

Peroxymonosulfate (PMS) catalytic activation is effective to eliminate organic pollutants from water, thus the development of low-cost and efficient catalysts is significant in applications. The resource conversion of plastic wastes (PWs) into carbon nanotubes (CNTs) is a promising candidate for PMS-based advanced oxidation processes (AOPs), and also a sustainable strategy to realize plastic management and reutilization. Herein, cost-effective PWs-derived N-doped CNTs (N-pCNTs) were synthesized, which displayed efficient activity for PMS activation through an electron transfer pathway (ETP) for sulfamethoxazole (SMX) degradation in high salinity water. The pyrrolic N induced the positively charged surface of N-pCNTs, favoring the electrostatic adsorption of PMS and subsequent generation of active PMS* . A galvanic oxidation process was developed to prove the electron-shuttle dominated ETP for SMX oxidation. Combined with theoretical calculations, the efficiency of ETP was determined by the potential difference between HOMO of SMX and LUMO of N-pCNTs. Such oxidation produced low-toxicity intermediates and resulted in selective degradation of specific sulfonamide antibiotics. This work reveals the feasibility of low-cost N-pCNTs catalysts from PWs serving as an appealing candidate for PMS-AOPs in water remediation, providing a new solution to alleviate environmental issues caused by PWs and also advances the understanding of ETP during PMS activation.

11.
Brain Res Bull ; 205: 110820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979810

ABSTRACT

Transforming growth factor-ß1 (TGF-ß1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-ß1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-ß1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-ß1 influences cognitive function and to explore therapeutic avenues for targeting TGF-ß1 in neurodegenerative conditions. This investigation sheds light on TGF-ß1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-ß1 and cognitive function.


Subject(s)
Cytokines , Transforming Growth Factor beta1 , Brain/metabolism , Cognition , Transforming Growth Factor beta1/metabolism , Humans
12.
Genomics ; 115(6): 110730, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866658

ABSTRACT

RNA-binding proteins (RBPs), which are key effectors of gene expression, play critical roles in inflammation and immune regulation. However, the potential biological function of RBPs in ankylosing spondylitis (AS) remains unclear. We identified differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) of five patients with AS and three healthy persons by RNA-seq, obtained differentially expressed RBPs by overlapping DEGs and RBPs summary table. RIOK3 was selected as a target RBP and knocked down in mouse bone marrow mesenchymal stem cells (mBMSCs), and transcriptomic studies of siRIOK3 mBMSCs were performed again using RNA-seq. Results showed that RIOK3 knockdown inhibited the expression of genes related to osteogenic differentiation, ribosome function, and ß-interferon pathways in mBMSCs. In vitro experiments have shown that RIOK3 knockdown reduced the osteogenic differentiation ability of mBMSCs. Collectively, RIOK3 may affect the differentiation of mBMSCs and participate in the pathogenesis of AS, especially pathological bone formation.


Subject(s)
Mesenchymal Stem Cells , Spondylitis, Ankylosing , Animals , Humans , Mice , Cell Differentiation , Cells, Cultured , Leukocytes, Mononuclear/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Spondylitis, Ankylosing/pathology
13.
World J Clin Cases ; 11(14): 3167-3175, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37274032

ABSTRACT

BACKGROUND: The incidence of lumbar tuberculosis is high worldwide, and effective treatment is a continuing problem. AIM: To study the safety and efficacy of the multitrack and multianchor point screw technique combined with the contralateral Wiltse approach for lesion debridement to treat lumbar tuberculosis. METHODS: The C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), visual analogue scale (VAS) score, oswestry disability index (ODI) and American Spinal Injury Association (ASIA) grade were recorded and analysed pre- and postoperatively. RESULTS: The CRP level and ESR returned to normal, and the VAS score and ODI were decreased at 3 mo postoperatively, with significant differences compared with the preoperative values (P < 0.01). Neurological dysfunction was relieved, and the ASIA grade increased, with no adverse events. CONCLUSION: The multitrack, multianchor point screw fixation technique combined with the contralateral Wiltse approach for debridement is an effective and safe method for the treatment of lumbar tuberculosis.

14.
Oncol Lett ; 25(6): 229, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37153064

ABSTRACT

Gallbladder neuroendocrine carcinoma (GB-NEC) is a rare, aggressive neuroendocrine carcinoma that arises from the gallbladder. Patients with GB-NEC usually have a poor prognosis. The present study described two cases diagnosed with GB-NEC and reviewed the literature to improve knowledge of GB-NEC. The present study reported on two cases of GB-NEC in male patients aged 65 and 66 years, respectively. Both patients underwent surgical resection. Postoperative pathology confirmed that one case had mixed adeno-neuroendocrine carcinoma and the other had large cell neuroendocrine carcinoma. In addition, both patients had uneventful recoveries following surgery and received cisplatin-etoposide combination chemotherapy. The present study summarized the two cases and reviewed the literature to improve understanding of GB-NEC. The results revealed that radiological findings of GB-NEC are non-specific. The present study demonstrated that surgical resection was still the most effective therapy and that postoperative adjuvant chemotherapy could markedly improve the prognosis of patients with GB-NEC.

15.
ISME J ; 17(8): 1184-1193, 2023 08.
Article in English | MEDLINE | ID: mdl-37179443

ABSTRACT

Dimethylsulfide (DMS) is the major biosulfur source emitted to the atmosphere with key roles in global sulfur cycling and potentially climate regulation. The main precursor of DMS is thought to be dimethylsulfoniopropionate. However, hydrogen sulfide (H2S), a widely distributed and abundant volatile in natural environments, can be methylated to DMS. The microorganisms and the enzymes that convert H2S to DMS, and their importance in global sulfur cycling were unknown. Here we demonstrate that the bacterial MddA enzyme, previously known as a methanethiol S-methyltransferase, could methylate inorganic H2S to DMS. We determine key residues involved in MddA catalysis and propose the mechanism for H2S S-methylation. These results enabled subsequent identification of functional MddA enzymes in abundant haloarchaea and a diverse range of algae, thus expanding the significance of MddA mediated H2S methylation to other domains of life. Furthermore, we provide evidence for H2S S-methylation being a detoxification strategy in microorganisms. The mddA gene was abundant in diverse environments including marine sediments, lake sediments, hydrothermal vents and soils. Thus, the significance of MddA-driven methylation of inorganic H2S to global DMS production and sulfur cycling has likely been considerably underestimated.


Subject(s)
Hydrogen Sulfide , Methylation , Sulfides , Sulfur
16.
Waste Manag ; 166: 141-151, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37172515

ABSTRACT

The investigation of the pyrolysis behaviour of real-world waste plastics (RWWP) and using them as the feedstock to produce carbon nanotubes (CNTs) could serve as an effective solution to address the global waste plastics catastrophe. This research aimed to characterize the pyrolysis behaviour of RWWP via thermogravimetric analysis (TG) and fast pyrolysis-TG/mass spectrometry (Py-TG/MS) analyses. Activation energies (131.04 kJ mol-1 -171.04 kJ mol-1) for RWWP pyrolysis were calculated by three methods: Flynn-Wall-Ozawa (FWO) method, Kissinger-Akahira-Sunose (KAS) method, and Starink method. Py-TG/MS results indicated that the RWWP could be identified as polystyrene (RWWP-1), polyethylene (RWWP-2), polyethylene terephthalate (RWWP-3, 4), and polypropylene (RWWP-5, 6). In addition, RWWP-1, 2, 5, 6 outperform RWWP-3 and 4 as sources of carbon for producing CNTs. The results showed a high carbon yield of 32.21 wt% and a high degree of CNT purity at 93.04%.


Subject(s)
Nanotubes, Carbon , Plastics , Pyrolysis , Kinetics , Thermogravimetry
17.
Front Oncol ; 13: 1167143, 2023.
Article in English | MEDLINE | ID: mdl-37251917

ABSTRACT

The synuclein family, consisting of α-, ß-, and γ-synuclein, is primarily expressed in neurons. Mutations of α- and ß-synuclein have been linked to Parkinson's disease and dementia with Lewy bodies, respectively. Recent studies have shown that synucleins are upregulated in various tumors, including breast, ovarian, meningioma, and melanoma, and high synuclein expression is associated with poor prognosis and drug resistance. We report a novel rearrangement of ß-synuclein in a pediatric T-cell acute lymphoblastic leukemia (T-ALL) case, where ß-synuclein (SNCB) is fused in-frame with ETS variant transcription factor 6 (ETV6), a gene frequently rearranged in acute leukemia including acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia (B-ALL), and T-ALL. An additional case of ß-synuclein rearrangement was identified in a squamous cell carcinoma of the lung through analysis of the public TCGA database. Both rearrangements involve the C-terminal of ß-synuclein. Since ß-synuclein shares extensive amino acid similarities with α-synuclein and α-synuclein binds to 14-3-3, an important regulator of apoptosis, the rearranged ß-synuclein may contribute to tumorigenesis by deregulating apoptosis. In addition, overexpression of synucleins has been shown to increase cell proliferation, suggesting that the rearranged ß-synuclein may also deregulate the cell cycle.

18.
Small ; 19(30): e2208137, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37046186

ABSTRACT

Solar evaporation has become a promising and sustainable technique for harvesting freshwater from seawater and wastewater. However, the applicability and efficacy of solar evaporation need further improvement to achieve high production closer to theoretical limits in compact systems. A 3D (three-dimensional) hierarchical inverted conical solar evaporation is developed, which consists of a 3D copper foam skeleton cone decorated with micro-/nano-structures functionalized with graphene oxide, fabricated via easy and scalable wet oxidation, impregnation, and drying at room temperature. The proposed configuration empowers high-efficiency solar absorption, continuous liquid film spreading and transport, enhanced interfacial local evaporation, and rapid vapor diffusion through the pores. More notably, the 3D conical evaporator realizes thermal localization at the skeleton interface and allows evaporation to occur along the complete structure with unimpeded liquid and vapor rapid diffusion. The solar-thermal evaporation efficiency under 1-Sun is as high as 93% with a maximum evaporation rate per unit area of 1.71 kg·m-2 ·h-1 . This work highlights the benefits of synergistic cooperation of an easily scalable 3D hierarchical functiomicro-/nano-structured copper foam skeletons and functionalized graphene oxide for high-efficient solar evaporation of interest to numerous applications.

19.
Angew Chem Int Ed Engl ; 62(27): e202303267, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37099268

ABSTRACT

High-valent metal-oxo (HVMO) species are powerful non-radical reactive species that enhance advanced oxidation processes (AOPs) due to their long half-lives and high selectivity towards recalcitrant water pollutants with electron-donating groups. However, high-valent cobalt-oxo (CoIV =O) generation is challenging in peroxymonosulfate (PMS)-based AOPs because the high 3d-orbital occupancy of cobalt would disfavor its binding with a terminal oxygen ligand. Herein, we propose a strategy to construct isolated Co sites with unique N1 O2 coordination on the Mn3 O4 surface. The asymmetric N1 O2 configuration is able to accept electrons from the Co 3d-orbital, resulting in significant electronic delocalization at Co sites for promoted PMS adsorption, dissociation and subsequent generation of CoIV =O species. CoN1 O2 /Mn3 O4 exhibits high intrinsic activity in PMS activation and sulfamethoxazole (SMX) degradation, highly outperforming its counterpart with a CoO3 configuration, carbon-based single-atom catalysts with CoN4 configuration, and commercial cobalt oxides. CoIV =O species effectively oxidize the target contaminants via oxygen atom transfer to produce low-toxicity intermediates. These findings could advance the mechanistic understanding of PMS activation at the molecular level and guide the rational design of efficient environmental catalysts.

20.
Ann Transl Med ; 11(4): 165, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36923098

ABSTRACT

Background: Recent evidence shows that COL3A1 promotes the progression of many types of cancer. The purpose of our study is to explore the correlation between COL3A1 and the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and its potential mechanism. Methods: We initially screened the differentially expressed gene COL3A1 in The Cancer Genome Atlas (TCGA) database, and the association between the expression level of COL3A1, prognosis, and the clinical parameters of HNSCC patients was verified. A nomogram was constructed according to the multivariate analysis results. Next, a heatmap of COL3A1 co-expressed genes was constructed in TCGA database. The TargetScan database is used to explore the microRNAs (miRNA) related to COL3A1. The starBase database was used to explore and predict the long non-coding RNAs (lncRNAs) that the candidate miRNAs might bind to. Finally, the potential mechanism of action was investigated using Gene Set Enrichment Analysis (GSEA). Results: COL3A1 expression is elevated in HNSCC tumor tissues, and HNSCC patients with high COL3A1 expression have worse prognostic factors. COL3A1 was positively correlated with the central carbon metabolism-related proteins: epidermal growth factor receptor (EGFR), phosphoglycerate mutase 1 (PGAM1), hexokinase 3 (HK3), and phosphofructokinase, platelet (PFKP). The TargetScan database showed that the best candidate miRNA for binding to the three prime untranslated region (3'UTR) end of COL3A1 mRNA was hsa-miR-29b-3p, which was negatively correlated with COL3A1. The starBase database showed that the lncRNA X Inactive Specific Transcript (lncRNA XIST) was the best candidate upstream non-coding RNA for regulating hsa-miR-29b-3p. GSEA showed that COL3A1 may be involved in the poor prognosis of HNSCC by participating in carbon metabolism, glucose metabolism, oxidative stress, and the Wingless-Type MMTV Integration Site Family (Wnt) and vascular endothelial growth factor A-vascular endothelial growth factor receptor 2 (VEGFA-VEGFR2) pathways. Conclusions: Low COL3A1 expression can be employed as a new HNSCC predictive biomarker, and the prognosis of HNSCC patients with lower COL3A1 expression can be greatly improved. At the same time, we found that the lncRNA XIST/miR-29b-3p/COL3A1 axis may regulate the central carbon metabolism of HNSCC and is associated with poor prognosis. These findings point to a potential target for developing HNSCC anticancer therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...