Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Antonie Van Leeuwenhoek ; 114(11): 1935-1947, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34533662

ABSTRACT

We report three yellow-pigmented, Gram-negative, aerobic, rod-shaped, motile bacterial isolates designated as PPL1T, PPL2, and PPL3 from healthy basmati rice seeds. Phenotypic and 16S rRNA gene sequence analysis assigned these isolates to the genus Xanthomonas. The 16S rRNA showed a 99.59% similarity with X. sacchari CFBP 4641T, a sugarcane pathogen. Further, biochemical and fatty acid analysis revealed it to be closer to X. sacchari. Still, it differed from other species in general and known rice associated species such as X. oryzae (pathogenic) and X. maliensis (non-pathogenic) in particular. Interestingly, the isolatess in this study were isolated from healthy rice plants but are closely related to species that is pathogenic and isolated from diseased sugarcane. Accordingly, in planta studies revealed that PPL1T, PPL2, and PPL3 are non-pathogenic to rice plants upon leaf inoculation. Taxonogenomic studies based on orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values with type strains of Xanthomonas species were below the recommended threshold values for species delineation. Whole genome-based phylogenomic analysis revealed that these isolates formed a distinct monophyletic clade with X. sacchari CFBP 4641T as their closest neighbour. Further, pangenome analysis revealed PPL1T, PPL2, and PPL3 isolates to comprise NRPS cluster along with a large number of unique genes associated with the novel species. Based on polyphasic and genomic approaches, a novel lineage and species associated with healthy rice seeds for which the name Xanthomonas sontii sp. nov. is proposed. The type strain for the X. sontii sp. nov. is PPL1T (JCM 33631T = CFBP 8688T = ICMP 23426T = MTCC 12491T) and PPL2 (JCM 33632 = CFBP 8689 = ICMP 23427 = MTCC 12492) and PPL3 (JCM 33633 = CFBP 8690 = ICMP 23428 = MTCC 12493) as other strains of the species.


Subject(s)
Oryza , Xanthomonas , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Seeds , Sequence Analysis, DNA , Xanthomonas/genetics
3.
ISME J ; 15(6): 1680-1694, 2021 06.
Article in English | MEDLINE | ID: mdl-33452479

ABSTRACT

Bacterial endosymbiosis has been instrumental in eukaryotic evolution, and includes both mutualistic, dependent and parasitic associations. Here we characterize an intracellular bacterium inhabiting the flagellated protist Bodo saltans (Kinetoplastida). We present a complete bacterial genome comprising a 1.39 Mb circular chromosome with 40.6% GC content. Fluorescent in situ hybridisation confirms that the endosymbiont is located adjacent to the nuclear membrane, and a detailed model of its intracellular niche is generated using serial block-face scanning electron microscopy. Phylogenomic analysis shows that the endosymbiont belongs to the Holosporales, most closely related to other α-proteobacterial endosymbionts of ciliates and amoebae. Comparative genomics indicates that it has a limited metabolism and is nutritionally host-dependent. However, the endosymbiont genome does encode diverse symbiont-specific secretory proteins, including a type VI secretion system and three separate toxin-antitoxin systems. We show that these systems are actively transcribed and hypothesize they represent a mechanism by which B. saltans becomes addicted to its endosymbiont. Consistent with this idea, attempts to cure Bodo of endosymbionts led to rapid and uniform cell death. This study adds kinetoplastid flagellates to ciliates and amoebae as hosts of Paracaedibacter-like bacteria, suggesting that these antagonistic endosymbioses became established very early in Eukaryotic evolution.


Subject(s)
Alphaproteobacteria , Kinetoplastida , Toxin-Antitoxin Systems , Eukaryota , Phylogeny , Symbiosis
4.
Front Microbiol ; 11: 579504, 2020.
Article in English | MEDLINE | ID: mdl-33193207

ABSTRACT

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) constrains production in major rice growing countries of Asia. Xoo injects transcription activator-like effectors (TALEs) that bind to and activate host "susceptibility" (S) genes that are important for disease. The bacterial blight resistance gene xa5, which reduces TALE activity generally, has been widely deployed. However, strains defeating xa5 have been reported in India and recently also in Thailand. We completely sequenced and compared the genomes of one such strain from each country and examined the encoded TALEs. The two genomes are nearly identical, including the TALE genes, and belong to a previously identified, highly clonal lineage. Each strain harbors a TALE known to activate the major S gene SWEET11 strongly enough to be effective even when diminished by xa5. The findings suggest international migration of the xa5-compatible pathotype and highlight the utility of whole genome sequencing and TALE analysis for understanding and responding to breakdown of resistance.

5.
Front Microbiol ; 9: 2703, 2018.
Article in English | MEDLINE | ID: mdl-30483230

ABSTRACT

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host "susceptibility" (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harboring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.

6.
Microb Genom ; 4(8)2018 08.
Article in English | MEDLINE | ID: mdl-30084764

ABSTRACT

Stenotrophomonas maltophilia has evolved as one of the leading multidrug-resistant pathogens responsible for a variety of nosocomial infections especially in highly debilitated patients. As information on the genomic and intraspecies diversity of this clinically important pathogen is limited, we sequenced the whole genome of 27 clinical isolates from hospitalized patients. Phylogenomic analysis along with the genomes of type strains suggested that the clinical isolates are distributed over the Stenotrophomonas maltophilia complex (Smc) within the genus Stenotrophomonas. Further genome-based taxonomy coupled with the genomes of type strains of the genus Stenotrophomonas allowed us to identify five cryptic genomospecies, which are associated with the clinical isolates of S. maltophilia and are potentially novel species. These isolates share a very small core genome that implies a high level of genetic diversity within the isolates. Recombination analysis of core genomes revealed that the impact of recombination is more than mutation in the diversification of clinical S. maltophilia isolates. Distribution analysis of well-characterized antibiotic-resistance and efflux pump genes of S. maltophilia across multiple novel genomospecies provided insights into its antibiotic-resistant ability. This study supports the existence of multiple cryptic species within the Smc besides S. maltophilia, which are associated with human infections, and highlights the importance of genome-based approaches to delineate bacterial species. This data will aid in improving clinical diagnosis and for understanding species-specific clinical manifestations of infection due to Stenotrophomonas species.


Subject(s)
Cross Infection/genetics , Drug Resistance, Bacterial/genetics , Gram-Negative Bacterial Infections/genetics , Phylogeny , Stenotrophomonas maltophilia/genetics , Humans , Stenotrophomonas maltophilia/isolation & purification
7.
Syst Appl Microbiol ; 41(6): 570-580, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30139512

ABSTRACT

Three novel strains namely, L1E11T, L1E4 and 228 were isolated as part of an ongoing study on 1-aminocyclopropane-1-carboxylate (ACC) deaminase expressing rhizobacteria from crops cultivated in saline affected coastal agro-ecosystems of Kerala, India. The novel strains were positive for many properties that are beneficial to plant growth including ACC deaminase (ACCd) activity that ranged from 1.87±0.27 to 2.88±0.71µmol of α-ketobutyrate/hr/mg of total protein. Presence of other traits such as biofilm formation, siderophore production, phosphate solubilisation, utilisation of root derived compounds and ability to colonise host roots indicates its plant-associated life style. In complement, the genomic data reveals gene features for higher adaptation to plant-associated environments. In-planta assays showed that L1E11T can promote and protect pokkali rice plants from 200mM NaCl stress. Phylogenetic, chemotaxonomic, phenotypic and genomic characterisation indicates that the novel strains belong to a novel genus and species of the order Oceanospirillales for which the names Pokkaliibacter gen. nov., and Pokkaliibacter plantistimulans sp. nov., are proposed with L1E11T (=DSM 28732T=MCC 2992T) as the type strain. Further, on the basis of low 16S rRNA sequence similarity, phylogenetic divergence, source of isolation and few differences in the phenotypic properties against its nearest taxon, a new family Balneatrichaceae fam. nov., is proposed to accommodate the two genera Balneatrix and Pokkaliibacter gen.nov. with Balneatrix as the type genus. An emended description of the genus Balneatrix is also presented.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Crops, Agricultural/microbiology , Oceanospirillaceae/classification , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , India , Oceanospirillaceae/enzymology , Oceanospirillaceae/genetics , Oceanospirillaceae/isolation & purification , Oryza/microbiology , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Rhizosphere , Salinity , Sequence Analysis, DNA
8.
Front Microbiol ; 8: 590, 2017.
Article in English | MEDLINE | ID: mdl-28428775

ABSTRACT

Burkholderia cenocepacia is a clinically dominant form among the other virulent species of Burkholderia cepacia complex (Bcc). In the present study, we sequenced and analyzed the genomes of seven nosocomial Bcc isolates, five of which were isolated from the bloodstream infections and two isolates were recovered from the hospital setting during the surveillance. Genome-based species identification of the Bcc isolates using a type strain explicitly identified the species as B. cenocepacia. Moreover, single nucleotide polymorphism analysis revealed that the six isolates were clonal and phylogenetically distinct from the other B. cenocepacia. Comparative genomics distinctly revealed the larger genome size of six clonal isolates as well as the presence of a novel 107 kb genomic island named as BcenGI15, which encodes putative pathogenicity-associated genes. We have shown that the BcenGI15 has an ability to actively excise from the genome and forming an extrachromosomal circular form suggesting its mobile nature. Surprisingly, a homolog of BcenGI15 was also present in the genome of a clinical isolate named Burkholderia pseudomallei strain EY1. This novel genetic element is present only in the variants of B. cenocepacia and B. pseudomallei isolates suggesting its interspecies existence in the main pathogenic species of the genus Burkholderia. In conclusion, the whole genome analysis of the genomically distinct B. cenocepacia clinical isolates has advanced our understanding of the epidemiology and evolution of this important nosocomial pathogen as well as its relatives.

9.
Appl Environ Microbiol ; 83(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28258140

ABSTRACT

Citrus canker, caused by Xanthomonas citri pv. citri, is a serious disease of citrus plants worldwide. Earlier phylogenetic studies using housekeeping genes revealed that X. citri pv. citri is related to many other pathovars, which can be collectively referred as Xanthomonas citri pathovars (XCPs). From the present study, we report the genome sequences of 18 XCPs and compared them with four XCPs available in the public domain. In a tree based on phylogenomic marker genes, all the XCPs form a monophyletic cluster, suggesting their origin from a common ancestor. Phylogenomic analysis using the type strain further established that all the XCPs belong to one species. Clonal analysis of the core genome revealed the presence of two major lineages within this monophyletic cluster consisting of some clonal variants. Incidentally, the majority of these XCPs were first noticed in India, corroborating their clonal relationship and their common origin. Comparative analysis revealed an open pan-genome and the role of interstrain genomic flux of these XCPs since their diversification from a common ancestor. Even though there are wide variations in type III gene effectomes, we identified three core effectors which can be valuable in resistance-breeding programs. Overall, genomic examination of ecological relatives allowed us to dissect the tremendous genomic potential of X. citri species to rapidly evolve into specialized strains infecting diverse crop plants.IMPORTANCE Host specialization is one of the characteristic features of highly evolved pathogens such as the Xanthomonas group of phytopathogenic bacteria. Since the hosts involve staple crops and economically important fruits such as citrus, detailed understanding of the diversity and evolution of such strains infecting diverse plants is important for quarantine purposes. In the present study, we carried out genomic investigation of members of a phylogenetically and ecologically defined group of Xanthomonas strains pathogenic to diverse plants, including citrus. This group includes the oldest Xanthomonas pathovars and also recently emerged pathovars in a particular country where they are endemic. Our high-throughput genomic study has provided novel insights into the evolution of a unique lineage consisting of serious pathogens and their ecological relatives, suggesting the nature, scope, and pattern of rapid and recent diversification. Further, from the level of species to that of clonal variants, the study revealed interesting genomic patterns in diversification of a Xanthomonas lineage and perhaps will inspire careful study of the host range of the included pathovars.


Subject(s)
Citrus/microbiology , Genetic Variation , Plant Diseases/microbiology , Xanthomonas/classification , Xanthomonas/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Genotype , India , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Xanthomonas/isolation & purification
10.
Sci Rep ; 7: 40694, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28084432

ABSTRACT

Xanthomonas oryzae pv. oryzae ( Xoo) is a serious pathogen of rice causing bacterial leaf blight disease. Resistant varieties and breeding programs are being hampered by the emergence of highly virulent strains. Herein we report population based whole genome sequencing and analysis of 100 Xoo strains from India. Phylogenomic analysis revealed the clustering of Xoo strains from India along with other Asian strains, distinct from African and US Xo strains. The Indian Xoo population consists of a major clonal lineage and four minor but highly diverse lineages. Interestingly, the variant alleles, gene clusters and highly pathogenic strains are primarily restricted to minor lineages L-II to L-V and in particularly to lineage L-III. We could also find the association of an expanded CRISPR cassette and a highly variant LPS gene cluster with the dominant lineage. Molecular dating revealed that the major lineage, L-I is youngest and of recent origin compared to remaining minor lineages that seems to have originated much earlier in the past. Further, we were also able to identify core effector genes that may be helpful in efforts towards building durable resistance against this pathogen.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Bacterial , Xanthomonas/genetics , Amino Acid Sequence , India , Oryza/microbiology , Phylogeny , Phylogeography , Plant Diseases/microbiology , Recombination, Genetic , Virulence Factors/chemistry , Virulence Factors/genetics , Whole Genome Sequencing , Xanthomonas/classification
11.
Sci Rep ; 6: 35769, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767197

ABSTRACT

Burkholderia cepacia complex (Bcc) is a complex group of bacteria causing opportunistic infections in immunocompromised and cystic fibrosis (CF) patients. Herein, we report multilocus sequence typing and analysis of the 57 clinical isolates of Bcc collected over the period of seven years (2005-2012) from several hospitals across India. A total of 21 sequence types (ST) including two STs from cystic fibrosis patient's isolates and twelve novel STs were identified in the population reflecting the extent of genetic diversity. Multilocus sequence analysis revealed two lineages in population, a major lineage belonging to B. cenocepacia and a minor lineage belonging to B. cepacia. Split-decomposition analysis suggests absence of interspecies recombination and intraspecies recombination contributed in generating genotypic diversity amongst isolates. Further linkage disequilibrium analysis indicates that recombination takes place at a low frequency, which is not sufficient to break down the clonal relationship. This knowledge of the genetic structure of Bcc population from a rapidly developing country will be invaluable in the epidemiology, surveillance and understanding global diversity of this group of a pathogen.


Subject(s)
Burkholderia cepacia complex/genetics , Genetic Variation , Bacterial Typing Techniques , Burkholderia Infections/microbiology , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/isolation & purification , Burkholderia cepacia/genetics , Burkholderia cepacia/isolation & purification , Burkholderia cepacia complex/classification , Burkholderia cepacia complex/isolation & purification , Cystic Fibrosis/microbiology , DNA, Bacterial/genetics , Humans , India , Linkage Disequilibrium , Multilocus Sequence Typing , Opportunistic Infections/microbiology , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA
12.
Front Microbiol ; 7: 309, 2016.
Article in English | MEDLINE | ID: mdl-27014232

ABSTRACT

Genomic resource of type strains and historically important strains of genus Stenotrophomonas allowed us to reveal the existence of 18 distinct species by applying modern phylogenomic criterions. Apart from Stenotrophomonas maltophilia, S. africana represents another species of clinical importance. Interestingly, Pseudomonas hibsicola, P. beteli, and S. pavani that are of plant origin are closer to S. maltophilia than the majority of the environmental isolates. The genus has an open pan-genome. By providing the case study on genes encoding metallo-ß-lactamase and Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) regions, we have tried to show the importance of this genomic dataset in understanding its ecology.

13.
Sci Adv ; 1(6): e1500245, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26601222

ABSTRACT

Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21-amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals.

14.
Genome Announc ; 3(6)2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26543133

ABSTRACT

Acinetobacter baumannii resistance to carbapenems is of global concern. Here, we report the 3.9 Mb draft genome of a cerebrospinal fluid isolate of A. baumannii strain 10441_14 which is carbapenem resistant and belongs to ST451. This genome will further help in the understanding of the drug resistance mechanism, epidemiology, and pathology of this bacterium.

15.
Genome Announc ; 3(5)2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26472849

ABSTRACT

We report here the 4.1-Mb draft genome sequence of Acinetobacter baumannii strain 5021_13, a cerebrospinal fluid isolate from northern India. This genome information will help studies toward understanding the epidemiology and pathogenicity of this important nosocomial pathogen.

17.
Appl Environ Microbiol ; 80(20): 6266-79, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25085494

ABSTRACT

Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker (CBC) and is a serious problem worldwide. Like CBC, several important diseases in other fruits, such as mango, pomegranate, and grape, are also caused by Xanthomonas pathovars that display remarkable specificity toward their hosts. While citrus and mango diseases were documented more than 100 years ago, the pomegranate and grape diseases have been known only since the 1950s and 1970s, respectively. Interestingly, diseases caused by all these pathovars were noted first in India. Our genome-based phylogenetic studies suggest that these diverse pathogens belong to a single species and these pathovars may be just a group of rapidly evolving strains. Furthermore, the recently reported pathovars, such as those infecting grape and pomegranate, form independent clonal lineages, while the citrus and mango pathovars that have been known for a long time form one clonal lineage. Such an understanding of their phylogenomic relationship has further allowed us to understand major and unique variations in the lineages that give rise to these pathovars. Whole-genome sequencing studies including ecological relatives from their putative country of origin has allowed us to understand the evolutionary history of Xac and other pathovars that infect fruits.


Subject(s)
Biological Evolution , Plant Diseases/microbiology , Xanthomonas axonopodis/genetics , Xanthomonas axonopodis/pathogenicity , Anisoles , Clustered Regularly Interspaced Short Palindromic Repeats , Genes, Bacterial , Genetic Variation , Genome, Bacterial , Integrons , Lipopolysaccharides/genetics , Lythraceae/microbiology , Mangifera/microbiology , Molecular Sequence Data , Phylogeny , Vitis/microbiology , Xanthomonas axonopodis/physiology
18.
J Bacteriol ; 194(16): 4468, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22843596

ABSTRACT

We report the 1.8-Mb genome sequence of Pediococcus pentosaceus strain IE-3, isolated from a dairy effluent sample. The whole-genome sequence of this strain will aid in comparative genomics of Pediococcus pentosaceus strains of diverse ecological origins and their biotechnological applications.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Pediococcus/genetics , Sequence Analysis, DNA , Environmental Microbiology , Molecular Sequence Data , Pediococcus/isolation & purification
19.
J Bacteriol ; 194(11): 3031, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22582385

ABSTRACT

We report the 5.1-Mb genome sequence of Xanthomonas citri pv. mangiferaeindicae strain LMG 941, the causal agent of bacterial black spot in mango. Apart from evolutionary studies, the draft genome will be a valuable resource for the epidemiological studies and quarantine of this phytopathogen.


Subject(s)
Genome, Bacterial , Mangifera/microbiology , Plant Diseases/microbiology , Xanthomonas/genetics , Base Composition , Base Sequence , Molecular Sequence Data , Xanthomonas/classification , Xanthomonas/isolation & purification
20.
J Bacteriol ; 194(9): 2395, 2012 May.
Article in English | MEDLINE | ID: mdl-22493202

ABSTRACT

We report the 4.94-Mb genome sequence of Xanthomonas axonopodis pv. punicae strain LMG 859, the causal agent of bacterial leaf blight disease in pomegranate. The draft genome will aid in comparative genomics, epidemiological studies, and quarantine of this devastating phytopathogen.


Subject(s)
Genome, Bacterial , Xanthomonas axonopodis/classification , Xanthomonas axonopodis/genetics , Chromosomes, Bacterial , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...