Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 83
1.
Chemosphere ; 357: 142038, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621486

Mercury (Hg) stable isotope ratios supplemented by Hg solid speciation data were determined in soils in a former Fe-Hg mining/smelting area (Jedová hora, Czech Republic, Central Europe). The dominant Hg phase in the studied soils was found to be cinnabar (HgS). A secondary form of soil Hg(II) was represented by Hg weakly and strongly bound to mineral (micro)particles, as revealed by thermo-desorption analysis. These Hg species probably play a key role in local soil Hg processes and biogeochemical cycling. The Hg isotopic data generally showed small differences between HgS (-1.1 to -0.8‰; δ202Hg) and the soil samples (-1.4 to -0.9‰; δ202Hg), as well as limited isotopic variability within the two studied soil profiles. On the other hand, the detected negative δ202Hg shift (∼0.4‰) in organic horizons compared to mineral soils in the highly contaminated profile suggests the presence of secondary post-depositional Hg processes, such as sorption or redox changes. For the less contaminated profile, the observed Hg isotopic variation (∼0.3‰; δ202Hg) in the subsurface mineral soil compared to both overlying and underlying horizons is likely due to cyclic redox reactions associated with Hg isotopic fractionation. We assume that the adsorption of Hg(II) to secondary Fe(III)/Mn(III,IV)-oxides could be of major importance in such cases.


Environmental Monitoring , Iron , Mercury , Mining , Soil Pollutants , Soil , Mercury/analysis , Mercury/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Environmental Monitoring/methods , Czech Republic , Iron/chemistry , Iron/analysis , Mercury Isotopes/analysis , Mercury Compounds
2.
Environ Pollut ; 342: 122862, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38040181

Thallium (Tl) is a highly toxic trace metal, included in the US EPA list of priority pollutants. Even though its toxicity is potentially higher or comparable to Cd or Hg, its environmental impact is largely unknown. Despite its toxicity, only a few recent studies are mapping the impact of recently introduced Tl on soil microbial communities, namely in agricultural systems but no studies focus on its long term effect. To complement the understanding of the impact of Tl on soil, this study aims to describe the influence of extremely high naturally occurring Tl concentration (50 mg/kg of potentially bioavailable Tl) on soil microbial communities. Our investigation concentrated on samples collected at Buus (Erzmatt, Swiss Jura, Switzerland), encompassing forest and meadow soil profiles of the local soil formed on hydrothermally mineralized dolomite rock, which is naturally rich in Tl. The soil profiles showed a significant proportion of potentially bioavailable Tl. Yet, even this high concentration of Tl has a limited impact on the richness of the soil bacterial community. Only the meadow soil samples show a reduced richness compared to control samples. Furthermore, our analysis of geogenic Tl contamination in the region unveiled a surprising finding: compared to other soils of Switzerland and in stark contrast to soils affected by recent mining activities, the structure of the bacterial community in Buus remained relatively unaffected. This observation highlights the unique ability of soil microbial communities to withstand extreme Tl contamination. Our study advances the understanding of Tl's environmental impact and underscores the resilience of soil microbes in the face of severe long-term contamination.


Mercury , Soil Pollutants , Trace Elements , Thallium/analysis , Soil/chemistry , Bacteria , Mercury/analysis , Trace Elements/analysis , Soil Pollutants/analysis , Environmental Monitoring , China
3.
Chemosphere ; 345: 140498, 2023 Dec.
Article En | MEDLINE | ID: mdl-37866499

Mining and processing of ores in arid (desert) areas generates high amounts of dust, which might be enriched in potentially harmful elements. We studied dust fractions of ores, soils, and technological materials from mining and related hydrometallurgical operation at former Skorpion Zinc non-sulfide Zn deposit in southern Namibia (closed and placed under maintenance in 2020). Chemical and mineralogical investigation was combined with oral bioaccessibility testing of fine dust fractions (<48 µm and <10 µm) in simulated gastric fluid (SGF) to assess potential risk of intake of metallic contaminants (Cd, Cu, Pb, Zn) for staff operating in the area. The bulk metals concentrations were largely variable and ranked as follows: soils < tailings â‰ª Skorpion ores < imported ores and dross used for feed ore blending. Maximum contaminant concentrations in the original granular materials were 927 mg Cd/kg, 9150 mg Cu/kg, 50 g Pb/kg and 706 g Zn/kg, respectively, and generally increased as a function of decreasing grain size. The highest bioaccessible concentrations of Cd and Pb yielded imported ores from Taiwan and Turkey and, together with the milled dross, these samples also exhibited the highest Zn bioaccessibilities. The exposure estimates calculated for a worker (weighing 70 kg) in this mining/ore processing operation at a dust ingestion rate of 100 mg/day indicated that most dust samples (soils, tailings, Skorpion ores) exhibited metals intake values far below tolerable daily intake limits. The overall health risk was limited in all mining and ore processing areas except for the ore blending area, where imported ores and recycled dross enriched in bioaccessible Cd, Pb and/or Zn were used for the ore blending. Safety measures required by the mine operator (wearing of masks by the operating staff) helped to prevent the staff's exposure to potentially contaminated dust even in this blending ore area.


Metals, Heavy , Soil Pollutants , Humans , Environmental Monitoring , Dust/analysis , Cadmium , Lead , Soil Pollutants/analysis , Soil , Zinc , Metals, Heavy/analysis
4.
Environ Pollut ; 337: 122557, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37716698

Here, for the first time, we report the concentrations and isotopic data of Ag in a variety of ore and metallurgical samples and forest soils that have been polluted due to Ag-Pb smelter emissions. Similar to the Ag concentrations, we identified a large range of δ109Ag values (from -0.8 to +2.4‰), a ∼3‰ spread, within the primary and secondary materials (i.e., galena, fly ash, slag and matte). This phenomenon, however, is evidently unrelated to Ag isotopic fractionation during the smelting process, but it reflects the starting 109Ag/107Ag signal in ore mineral and/or the specific type of ore genesis. The two studied soil profiles differed in Ag isotopic composition, but on the other hand, they consistently showed significantly lighter Ag (≤+0.8‰) of metallurgical origin in the upper horizons compared to the bottom horizons and bedrocks, with low Ag amounts depleted of 107Ag (≤+2.9‰). This isotopic pattern can be attributed to a ternary mixing relationship involving two major anthropogenic Ag components and a minor contribution from geogenic Ag. Accordingly, we did not observe any post-depositional isotopic fractionation in our soils, since Ag was geochemically stable and it was not subjected to leaching. In summary, the Ag isotopes have a potential to trace variations in anthropogenic phases, to monitor specific geochemical processes, and are clearly applicable as anthropogenic Ag source and Ag load proxies.


Environmental Monitoring , Silver , Isotopes/analysis , Minerals , Soil/chemistry
5.
Chemosphere ; 335: 139079, 2023 Sep.
Article En | MEDLINE | ID: mdl-37268232

Compared to compliance leaching tests performed on granular materials, leaching experiments on monolithic slags are more suitable for predicting the contaminant release when large boulders or poured slag layers are submerged in water, a specific environmental scenario typical for many smelting sites. We conducted EN 15863 dynamic monolithic leaching tests on massive copper slags over a prolonged period of 168 d. The patterns of the major contaminant (Cu, Co) fluxes indicated an initial diffusion process followed by the dissolution of primary sulfides with the maximum cumulative releases attaining 75.6 mg/m2 Cu and 4.20 mg/m2 Co. A multi-method mineralogical investigation showed that lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) started to form on the slag surface already after 9 d of leaching and partly immobilized Cu (but not Co). Vanadium and other trace elements (Zn, Pb, Cd) were leached to a much lower extent, initially controlled by diffusion followed by depletion and/or sorption to Fe oxyhydroxides. The results of the long-term leaching of the monolithic slag provide new information about the key processes affecting the release of metal (loid) contaminants under specific submerged conditions and have implications for the environmental management of slag disposal sites and/or potential reuse of slags in civil engineering.


Copper , Trace Elements , Metals
6.
Sci Total Environ ; 867: 161405, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36621473

Extensive mining and smelting contributed to the declining quality of Luanshya soils. The local smelter was the epicenter of contamination as shown by a spatial distribution analysis. Closeby soil profiles smelter exhibit extremely high Cu concentrations (up to 46,000 mg kg-1 Cu) relative to deeper layers where only background levels of trace elements were observed. A remote profile did not exhibit significant contamination. Lead isotopic ratios revealed that Pb contamination in the Luanshya soils was not smelter-derived. It was shown in this way that the historical usage of leaded gasoline was the main source of this metal. Although the Luanshya smelter also produced Co, this metal was not an important contaminant. Copper leaching was a concern in Luanshya. Upwards of 52 % of Cu was extractable in the exchangeable step of a sequential extraction procedure (SEP), but only for samples where Cu concentrations were high, suggesting that Cu was released exclusively from anthropogenic particles. This was supported by the SEP results for similar depths at the remote soil, where only a small fraction of Cu was labile (5.6 %). Lead and Co were strongly bound in the soils throughout. The excess of Cu in the topsoils was mostly bound in smelter-derived particles. These appeared as spherical fast-cooled droplets composed mostly of sulfides, oxides, and glass. X-ray diffraction and electron probe microanalysis of those particles allowed for a phase classification. Compositions were regularly not stoichiometric so most particles were classified as intermediate solid solutions. However, molecular proportions often closely resembled those of bornite, chalcanthite, cuprospinel, covellite, delafossite, diginite, or hydrous ferric oxides. Concentrations of Cu were often 100 % near the center of the particles indicating an inefficient smelting process. Weathering to some degree was common, which in conjunction with the susceptibility of Cu leaching was highly alarming.

7.
Geohealth ; 6(11): e2022GH000683, 2022 Nov.
Article En | MEDLINE | ID: mdl-36348990

We studied the dust fractions of the smelting slag, mine tailings, and soil from the former Ni-Cu mining and processing district in Selebi-Phikwe (eastern Botswana). Multi-method chemical and mineralogical investigations were combined with oral bioaccessibility testing of the fine dust fractions (<48  and <10 µm) in a simulated gastric fluid to assess the potential risk of the intake of metal(loid)s contaminants. The total concentrations of the major contaminants varied significantly (Cu: 301-9,600 mg/kg, Ni: 850-7,000 mg/kg, Co: 48-791 mg/kg) but were generally higher in the finer dust fractions. The highest bioaccessible concentrations of Co, Cu, and Ni were found in the slag and mine tailing dusts, where these metals were mostly bound in sulfides (pentlandite, pyrrhotite, chalcopyrite). On the contrary, the soil dusts exhibited substantially lower bioaccessible fractions of these metals due to their binding in less soluble spinel-group oxides. The results indicate that slag dusts are assumed to be risk materials, especially when children are considered as a target group. Still, this exposure scenario seems unrealistic due to (a) the fencing of the former mine area and its inaccessibility to the local community and (b) the low proportion of the fine particles in the granulated slag dump and improbability of their transport by wind. The human health risk related to the incidental ingestion of the soil dust, the most accessible to the local population, seems to be quite limited in the Selebi-Phikwe area, even when a higher dust ingestion rate (280 mg/d) is considered.

8.
Environ Monit Assess ; 194(10): 755, 2022 Sep 09.
Article En | MEDLINE | ID: mdl-36083387

Mercury (Hg) concentrations in soils and Hg releases from soils during wildfires are not well characterised in Portugal, even though wildfire activity continues to increase around the Mediterranean. This study focused on the low to moderate severity wildfire in Pombal (Portugal) in 2019, which consumed 12.5 ha of maritime pine (Pinus pinaster Ait.). We evaluated Hg concentrations in soil profiles and Hg pools in organic horizons to assess the fire-induced Hg emissions. Moreover, impacts of the fire on forest floor properties were estimated. Four soil profiles were sampled, two at the burned area and two at a nearby unburned area. The soil profiles displayed a typical Hg distribution, with higher Hg concentrations (156 µg kg-1) in the organic horizons with a sharp decrease in the mineral layers. The bond between organic matter and Hg was evident along the profiles, with a strong correlation between TOC and Hg. Ratios of Hg/TOC in the surface layers of the soil were similar in all profiles. The mean organic Hg pool at the studied site was calculated at 10.6 g ha-1. The fire did not seem to affect the topsoil properties based on visual indicators and the lack of statistical differences (p > 0.05) among measured fire-sensitive chemical soil properties (pH, CEC, TOC, TS) between the topsoils of the burned and unburned areas. If we consider a hypothetical complete combustion of the organic layer (743 Mg) and unaffected topsoil, we estimated a release of 133 g of Hg from the burned area. The study emphasised the importance of the forest floor for Hg retention and its crucial role in Hg emissions during wildfires in a country increasingly affected by climate change.


Mercury , Pinus , Soil Pollutants , Wildfires , Environmental Monitoring , Forests , Mercury/analysis , Portugal , Soil , Soil Pollutants/analysis
9.
Chemosphere ; 305: 135499, 2022 Oct.
Article En | MEDLINE | ID: mdl-35777541

Community gardens are "green oases" of recent cities with many benefits for human society. From a human health perspective, these benefits can be damaged by chemical contamination of soil and cultivated vegetables. Using geochemical approaches, this study characterised (i) total metal(loid) concentrations in soils and two commonly grown vegetables in urban community gardens (Bratislava, Slovakia), (ii) gastrointestinal bioaccessibility using a modified physiologically based extraction test (PBET), and (iii) stable lead (Pb) isotopes in order to identify sources of metal(loid)s, solubilisation in the human body and migration of Pb from soil to vegetables. While some soils could be considered contaminated when compared to the Slovak legislation for agricultural soil, the bioaccessibility of metal(loid)s did not exceed 20% in the intestinal phase, with the exception of cadmium (Cd). Tomatoes and lettuce contained low total and bioaccessible concentrations of metal(loid)s, being safe for people who consume their own grown vegetables. There were differences in Pb isotope composition among bulk soils, vegetables and bioaccessible Pb, with less radiogenic Pb being preferentially mobilised. Statistical methods considering the compositional nature of the geochemical data and the enrichment factor (EF) distinguished well metal(loid)s of natural origin (As, Co, Cr, Fe, Mn, Ni, V) from those with anthropogenic contributions. This research has shown the usefulness of integrating different methodologies to better understand the geochemistry of metal(loid)s in urban soils with their highly diversified sources.


Metals, Heavy , Soil Pollutants , Environmental Monitoring/methods , Gardens , Humans , Isotopes , Lead , Metals, Heavy/analysis , Risk Assessment/methods , Soil/chemistry , Soil Pollutants/analysis , Vegetables
10.
Proc Biol Sci ; 289(1975): 20220246, 2022 05 25.
Article En | MEDLINE | ID: mdl-35611530

Termites feed on vegetal matter at various stages of decomposition. Lineages of wood- and soil-feeding termites are distributed across terrestrial ecosystems located between 45°N and 45°S of latitude, a distribution they acquired through many transoceanic dispersal events. While wood-feeding termites often live in the wood on which they feed and are efficient at dispersing across oceans by rafting, soil-feeders are believed to be poor dispersers. Therefore, their distribution across multiple continents requires an explanation. Here, we reconstructed the historical biogeography and the ancestral diet of termites using mitochondrial genomes and δ13C and δ15N stable isotope measurements obtained from 324 termite samples collected in five biogeographic realms. Our biogeographic models showed that wood-feeders are better at dispersing across oceans than soil-feeders, further corroborated by the presence of wood-feeders on remote islands devoid of soil-feeders. However, our ancestral range reconstructions identified 33 dispersal events among biogeographic realms, 18 of which were performed by soil-feeders. Therefore, despite their lower dispersal ability, soil-feeders performed several transoceanic dispersals that shaped the distribution of modern termites.


Genome, Mitochondrial , Isoptera , Animals , Diet , Ecosystem , Isoptera/genetics , Soil
11.
Prague Med Rep ; 123(1): 5-19, 2022.
Article En | MEDLINE | ID: mdl-35248160

The objective of the study was to determine the effects of inferior alveolar nerve transection on inorganic components in mandibular molars of the rat. We used 26 male laboratory rats of the Wistar strain for the study, age 7-9 weeks. The rats were divided in three groups. The control group (intact) included 6 rats. The surgery was performed under general anesthesia. The experimental group included (group with the nerve transected on the left) included 12 rats. The sham group (group with the nerve prepared without transection) included 8 rats. The animals were sacrificed after 4 weeks. Molars from the left and right sides of the mandible were extracted. Element content levels were determined using inductively coupled plasma mass spectrometry. The following elements were determined in all samples: magnesium (Mg), sodium (Na), potassium (K), calcium (Ca), zinc (Zn), and strontium (Sr). The nerve transection caused: a reduction of the contents of Ca and Sr in the mandibular molars; an increase in the contents of Mg and Zn; a difference arrangement of both sides for Na. The surgery approach itself caused a decrease in the contents of Na and K in the experimental and sham groups; the difference in K in M3 between the left and right sides disappeared due to the surgery. Our results have confirmed the hypothesis of inferior alveolar nerve transection having an effect on inorganic components in mandibular molars in the rat.


Mandible , Mandibular Nerve , Animals , Male , Mandible/surgery , Mandibular Nerve/physiology , Mandibular Nerve/surgery , Molar/surgery , Rats , Rats, Wistar
12.
Chemosphere ; 299: 134380, 2022 Jul.
Article En | MEDLINE | ID: mdl-35318025

Weathering of Tl-containing sulfides in a model (12-week) peat pot trial was studied to better understand their geochemical stability, dissolution kinetics, alteration products and the associated release and mobility of anthropogenic Tl in organic environments. We also present the effect of industrial acid rainwater on sulfide degradation and Tl migration in naturally acidic peat. Sphalerite (ZnS) was much less stable in peat than other Tl-containing sulfides (galena and pyrite), and thus acted as a major phase responsible for Tl mobilization. Furthermore, Tl incongruently leached out over Zn from ZnS, and accumulated considerably more in the peat solutions (≤5 µg Tl/L) and the peat samples (≤0.4 mg Tl/kg) that were subjected to acid rain watering compared to a deionized H2O regime. This finding was in good agreement with the absence of secondary Tl-containing phases, which could potentially control the Tl flux into the peat. The behavior of Tl was not as conservative as Pb throughout the trial, since a higher peat mobility and migration potential of Tl was observed compared to Pb. In conclusion, industrial acid precipitations can significantly affect the stability of ZnS even in acidic peat/organic environments, making it susceptible to enhanced weathering and Tl release in the long term.


Soil Pollutants , Thallium , Environmental Monitoring , Lead , Soil , Soil Pollutants/analysis , Sulfides , Thallium/analysis
13.
Sci Total Environ ; 819: 152008, 2022 May 01.
Article En | MEDLINE | ID: mdl-34852251

Arsenic incorporation into newly formed As sulfides has recently been identified as an important As sequestration pathway in both laboratory experiments and natural As-wetlands. Here, we used an in situ experimental technique with double nylon experimental bags (10-µm mesh) to study the effect of low-cost organic materials (sawdust, wood cubes and hemp shives) on As sulfidation in three naturally As-enriched wetland soils under water-saturated (~1 m depth) and neutral pH conditions. After 15 months of in situ incubation, all of the organic materials and their corresponding inner bags were covered by yellow-black mineral accumulations, dominantly composed of crystalline As4S4 polymorphs (realgar and bonazziite) and reactive Fe(II) sulfides (probably mackinawite); while the major fraction of As (~80%) was sequestered as AsS minerals. The amount of As accumulation in the experimental bags varied significantly (0.03-4.24 g As kg-1) and corresponded with different levels of As (0.23-9.4 mg As L-1) in the groundwater. Our findings suggest an authigenic formation of AsS minerals in strongly reducing conditions of experimental bags by a combination of reduced exchange of solutes through the pores of the bag and comparatively fast microbial production of dissolved sulfide. Arsenic sulfide formation, as an effective treatment mechanism for natural and human-constructed wetlands, appears to be favored for As(III)-rich waters with a low Fe(II)/As(III) molar ratio. These conditions prevent the consumption of dissolved As and sulfide by their preferential incorporation into natural organic matter, and newly-formed Fe(II) sulfides, respectively.


Arsenic , Groundwater , Arsenic/chemistry , Groundwater/chemistry , Humans , Minerals , Oxidation-Reduction , Soil/chemistry , Wetlands
14.
J Hazard Mater ; 424(Pt A): 127325, 2022 02 15.
Article En | MEDLINE | ID: mdl-34600374

In this study, we report combined Tl isotopic and Tl mineralogical and speciation data from a set of Tl-rich sulfide concentrates and technological wastes from hydrometallurgical Zn extraction. We also present the first evaluation of Tl isotopic ratios over a cycle of sulfide processing, from the ore flotation to pyro- and hydrometallurgical stages. The results demonstrate that the prevailing Tl form in all samples is Tl(I), without any preferential incorporation into sulfides or Tl-containing secondary phases, indicating an absence of Tl redox reactions. Although the Tl concentrations varied significantly in the studied samples (~9-280 mg/kg), the overall Tl isotopic variability was small, in the range of -3.1 to -4.4 ± 0.7 (2σ) ε205Tl units. By combining present ε205Tl results with the trends first found for a local roasting plant, it is possible to infer minimum Tl isotopic effects throughout the studied industrial process. As a result, the use of Tl isotopic ratios as a source proxy may be complicated or even impossible in areas with naturally high/extreme Tl background contents. On the other hand, areas with two or more isotopically contrasting Tl sources allow for relatively easy tracing, i.e., in compartments which do not suffer from post-depositional isotopic redistributions.


Soil Pollutants , Thallium , Environmental Monitoring , Isotopes/analysis , Soil Pollutants/analysis , Sulfides , Thallium/analysis
15.
Environ Pollut ; 290: 117973, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34428701

Vertical profiles of Tl, Pb and Zn concentrations and Tl and Pb isotopic ratios in a contaminated peatland/fen (Wolbrom, Poland) were studied to address questions regarding (i) potential long-term immobility of Tl in a peat profile, and (ii) a possible link in Tl isotopic signatures between a Tl source and a peat sample. Both prerequisites are required for using peatlands as archives of atmospheric Tl deposition and Tl isotopic ratios as a source proxy. We demonstrate that Tl is an immobile element in peat with a conservative pattern synonymous to that of Pb, and in contrast to Zn. However, the peat Tl record was more affected by geogenic source(s), as inferred from the calculated element enrichments. The finding further implies that Tl was largely absent from the pre-industrial emissions (>~250 years BP). The measured variations in Tl isotopic ratios in respective peat samples suggest a consistency with anthropogenic Tl (ε205Tl between ~ -3 and -4), as well as with background Tl isotopic values in the study area (ε205Tl between ~0 and -1), in line with detected 206Pb/207Pb ratios (1.16-1.19). Therefore, we propose that peatlands can be used for monitoring trends in Tl deposition and that Tl isotopic ratios can serve to distinguish its origin(s). However, given that the studied fen has a particularly complicated geochemistry (attributed to significant environmental changes in its history), it seems that ombrotrophic peatlands could be better suited for this type of Tl research.


Lead , Thallium , Environmental Monitoring , Mining , Soil , Thallium/analysis
16.
J Environ Manage ; 293: 112899, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34089961

The surroundings of mines and smelters may be exposed to wildfires, especially in semi-arid areas. The temperature-dependent releases of metal(loid)s (As, Cd, Cu, Pb, Zn) from biomass-rich savanna soils collected near a Cu smelter in Namibia have been studied under simulated wildfire conditions. Laboratory single-step combustion experiments (250-850 °C) and experiments with a continuous temperature increase (25-750 °C) were coupled with mineralogical investigations of the soils, ashes, and aerosols. Metals (Cd, Cu, Pb, Zn) were released at >550-600 °C, mostly at the highest temperatures, where complex aerosol particles, predominantly composed of slag-like aggregates, formed. In contrast, As exhibited several emission peaks at ~275 °C, ~370-410 °C, and ~580 °C, reflecting its complex speciation in the solid phase and indicating its remobilization, even during wildfires with moderate soil heating. At <500 °C, As was successively released via the transformation of As-bearing hydrous ferric oxides, arsenolite (As2O3) grains attached to the organic matter fragments, metal arsenates, and/or As-bearing apatite, followed by the thermal decomposition of enargite (Cu3AsS4) at >500 °C. The results indicate that the active and abandoned mining and smelting sites, especially those highly enriched in As, should be protected against wildfires, which can be responsible for substantial As re-emissions.


Metals, Heavy , Soil Pollutants , Wildfires , Environmental Monitoring , Grassland , Metals, Heavy/analysis , Namibia , Soil , Soil Pollutants/analysis
17.
Chemosphere ; 277: 130306, 2021 Aug.
Article En | MEDLINE | ID: mdl-33774247

In this study, two Czech wetland soils enriched in authigenic sulfide minerals (especially realgar) were collected from the saturated zone (60-100 cm), flooded with local groundwater and allowed to dry for up to 98 days. The objective was to examine the mobility of As, Fe, S and trace metals using selective chemical extractions, S isotopes and X-ray diffraction through the drying process. During the initial stage of incubation (∼20 days), the re-flooding of the soils triggered a microbially-mediated SO42- reduction, which immobilized the Co, Cu and Ni. The reductive dissolution of As-bearing Fe (oxyhydr)oxides and the release of As were documented only in the Fe-rich/organic-low soil. Over the next stage of incubation (∼75 days), the exposure and drying of the soils led to the oxidation of the Fe and As sulfides. The arsenic and trace metals released via oxidation of the sulfide phases (particularly Fe sulfides) were almost entirely sequestered by the Fe(III) (oxyhydr)oxides, but acidification during the oxidation stage of the incubation resulted in the pH-dependent release of the As and trace metals (Co, Cu, Ni) (especially in the Fe-rich/organic-low soil). These findings suggest that sulfidic soils in wetlands can be considered as long-term sources of As during major drought events.


Arsenic , Soil Pollutants , Arsenic/analysis , Iron/analysis , Oxidation-Reduction , Soil , Soil Pollutants/analysis , Sulfides , Wetlands
18.
Environ Sci Pollut Res Int ; 28(5): 5455-5471, 2021 Feb.
Article En | MEDLINE | ID: mdl-32965643

It is well known that road transport emits various trace elements into the environment, which are deposited in soils in the vicinity of roads, so-called roadside soils, and thus contributes to the deterioration of their chemical state. The aim of this work was to determine concentrations of some metals and metalloids (arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), vanadium (V), and zinc (Zn)) in soils from crossroads with traffic signals, which are characterized by deceleration of vehicles and increased emissions of elements related mainly to brake and tyre wear. The results confirmed a moderate enrichment of soils with Cu, Pb, and Zn (enrichment factor (EF) values > 2) and significant enrichment for Sb (EF > 5), while the other elements showed no or minimal enrichment. The age of crossroads proved to have a positive influence on the accumulation of some elements in soils with the largest differences for Cu, Fe, Pb, Sb, and Zn (p < 0.001). Traffic volumes expressed as the average daily traffic intensity (ADTI) also positively influenced soil concentrations of Cr, Cu, Pb, Sb, and Zn, while distance to the crossroad had a significant negative effect on the soil concentration of Cu, Sb, and Zn (p < 0.001). The stable isotopic ratios of Pb, 206Pb/207Pb and 208Pb/206Pb, ranging from 1.1414 to 1.2046 and from 2.0375 to 2.1246, respectively, pointed to the mixed natural-anthropic origin of Pb in the soils of crossroads with a visible contribution of traffic-related sources. Based on the above findings combined with covariance among the studied elements using statistical methods applied to compositionally transformed data, it was possible to show that Cu, Pb, Sb, and Zn clearly originated from road traffic.


Metals, Heavy , Soil Pollutants , Trace Elements , Cities , Environmental Monitoring , Metals, Heavy/analysis , Slovakia , Soil , Soil Pollutants/analysis , Trace Elements/analysis
19.
Environ Geochem Health ; 42(11): 3925-3947, 2020 Nov.
Article En | MEDLINE | ID: mdl-32638253

Today, it is proven that the contaminated urban soils are hazardous for the human health. Soil substrates of playgrounds call for special research as they are places where children are directly exposed to soil contaminants. Therefore, the objective of this work was to measure the pseudo-total contents and bioaccessibility of several metals and metalloids (As, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, V, Zn) in two grain sizes (< 150 µm and < 50 µm) of playground soils in Bratislava city (the capital of Slovakia). The content of metal(loid)s in the soils was controlled by a number of factors, with their increased contents (above 75% percentile or higher) at sites influenced by point sources of pollution (industry and agriculture) or at old sites located in the city centre. Cobalt, Cr, Fe, Mn, Ni and V had relatively uniform contents in soils compared to the other elements. As regression modelling with a categorical variable confirmed, the age of urban areas influenced the accumulation of As, Bi, Cd, Cu, Hg, Pb, Sb and Sn in playground soils. Exploratory statistical techniques with compositionally transformed data (principal component analysis, cluster analysis and construction of symmetric coordinates for correlation analysis) divided trace elements into the two main groupings, Co, Cr, Fe, Mn, Ni, V and Bi, Cd, Cu, Hg, Pb, Sb, Sn, Zn. Median concentrations of the elements in smaller soil grains (< 50 µm) were significantly higher than in coarser grains (< 150 µm). Cobalt, Cu, Mn, Pb, Sn and Zn had significantly higher bioaccessible proportions (% of the pseudo-total content) in < 50 µm soil size than in < 150 µm; however, the same order of bioaccessibility was achieved in both grain sizes. The highest bioaccessibility had Cd, Cu, Pb and Zn (~ 40% and more), followed by Co, As, Mn, Sb (18-27%), Hg, Ni, Sn (10-12%) and finally Cr, Fe and V (less than 4%). The hazard index and carcinogenic risk values were higher in < 50 µm than in < 150 µm and significantly decreased in the two soil sizes when the bioaccessibility results were included in the health hazard calculation.


Soil Pollutants/analysis , Trace Elements/analysis , Biological Availability , Carcinogens/analysis , Child , Cities , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Monitoring/methods , Humans , Metalloids/analysis , Metalloids/pharmacokinetics , Metals/analysis , Metals/pharmacokinetics , Parks, Recreational , Particle Size , Slovakia , Soil/chemistry , Soil Pollutants/pharmacokinetics , Soil Pollutants/toxicity , Trace Elements/pharmacokinetics , Trace Elements/toxicity
20.
Chemosphere ; 260: 127642, 2020 Dec.
Article En | MEDLINE | ID: mdl-32683030

The former Pb-Zn mining town of Kabwe in central Zambia is ranked amongst the worst polluted areas both in Africa and in the world. The fine dust particles from the ISF and Waelz slags deposited in Kabwe represent a health risk for the local population. Here, we combined a detailed multi-method mineralogical investigation with oral bioaccessibility testing in simulated gastric fluid (SGF; 0.4 M glycine, pH 1.5, L/S ratio of 100, 1 h, 37 °C) to evaluate the risk related to the incidental dust ingestion. The slag dust fractions contain up to 2610 mg/kg V, 6.3 wt% Pb and 19 wt% Zn. The metals are mainly bound in a slag glass and secondary phases, which formed during the slag weathering or were windblown from nearby tailing stockpiles (carbonates, Fe and Mn oxides, phosphates, vanadates). The bioaccessible fractions (BAFs) are rather high for all the main contaminants, with the BAF values generally higher for the ISF slags than for the Waelz slags: Pb (24-96%), V (21-100%) and Zn (54-81%). The results clearly indicate the potential risks related to the incidental slag dust ingestion. Even when a conservative value of the dust daily intake (100 mg/day) is considered, the daily contaminant intake significantly exceeds the tolerable daily intake limits, especially for Pb â‰« V > Zn. At higher ingestion rates, other minor contaminants (As, Cd) also become a health risk, especially for children. The slag heaps in Kabwe should be fenced to prevent local people entering and should be covered to limit the dust dispersion.


Environmental Exposure , Industrial Waste , Child , Cities , Dust/analysis , Environmental Monitoring , Environmental Pollutants , Humans , Metals/analysis , Mining , Zambia
...