Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
RSC Med Chem ; 14(3): 444-453, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36970152

ABSTRACT

Pretargeting is a powerful nuclear imaging strategy to achieve enhanced imaging contrast for nanomedicines and reduce the radiation burden to healthy tissue. Pretargeting is based on bioorthogonal chemistry. The most attractive reaction for this purpose is currently the tetrazine ligation, which occurs between trans-cyclooctene (TCO) tags and tetrazines (Tzs). Pretargeted imaging beyond the blood-brain barrier (BBB) is challenging and has not been reported thus far. In this study, we developed Tz imaging agents that are capable of ligating in vivo to targets beyond the BBB. We chose to develop 18F-labeled Tzs as they can be applied to positron emission tomography (PET) - the most powerful molecular imaging technology. Fluorine-18 is an ideal radionuclide for PET due to its almost ideal decay properties. As a non-metal radionuclide, fluorine-18 also allows for development of Tzs with physicochemical properties enabling passive brain diffusion. To develop these imaging agents, we applied a rational drug design approach. This approach was based on estimated and experimentally determined parameters such as the BBB score, pretargeted autoradiography contrast, in vivo brain influx and washout as well as on peripheral metabolism profiles. From 18 initially developed structures, five Tzs were selected to be tested for their in vivo click performance. Whereas all selected structures clicked in vivo to TCO-polymer deposited into the brain, [18F]18 displayed the most favorable characteristics with respect to brain pretargeting. [18F]18 is our lead compound for future pretargeted neuroimaging studies based on BBB-penetrant monoclonal antibodies. Pretargeting beyond the BBB will allow us to image targets in the brain that are currently not imageable, such as soluble oligomers of neurodegeneration biomarker proteins. Imaging of such currently non-imageable targets will allow early diagnosis and personalized treatment monitoring. This in turn will accelerate drug development and greatly benefit patient care.

2.
Chemistry ; 29(29): e202300345, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36853623

ABSTRACT

1,2,4,5-Tetrazines are increasingly used as reactants in bioorthogonal chemistry due to their high reactivity in Diels-Alder reactions with various dienophiles. Substituents in the 3- and 6-positions of the tetrazine scaffold are known to have a significant impact on the rate of cycloadditions; this is commonly explained on the basis of frontier molecular orbital theory. In contrast, we show that reactivity differences between commonly used classes of tetrazines are not controlled by frontier molecular orbital interactions. In particular, we demonstrate that mono-substituted tetrazines show high reactivity due to decreased Pauli repulsion, which leads to a more asynchronous approach associated with reduced distortion energy. This follows the recent Vermeeren-Hamlin-Bickelhaupt model of reactivity increase in asymmetric Diels-Alder reactions. In addition, we reveal that ethylene is not a good model compound for other alkenes in Diels-Alder reactions.

3.
Chemistry ; 29(3): e202203069, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36250260

ABSTRACT

Modified trans-cyclooctenes (TCO) are capable of highly efficient molecular manipulations in biological environments, driven by the bioorthogonal reaction with tetrazines (Tz). The development of click-cleavable TCO has fueled the field of in vivo chemistry and enabled the design of therapeutic strategies that have already started to enter the clinic. A key element for most of these approaches is the implementation of a cleavable TCO linker. So far, only one member of this class has been developed, a compound that requires a high synthetic effort, mainly to fulfill the multilayered demands on its chemical structure. To tackle this limitation, we developed a dioxolane-fused cleavable TCO linker (dcTCO) that can be prepared in only five steps by applying an oxidative desymmetrization to achieve diastereoselective introduction of the required functionalities. Based on investigation of the structure, reaction kinetics, stability, and hydrophilicity of dcTCO, we demonstrate its bioorthogonal application in the design of a caged prodrug that can be activated by in-situ Tz-triggered cleavage to achieve a remarkable >1000-fold increase in cytotoxicity.


Subject(s)
Cyclooctanes , Oxidative Stress , Oxidation-Reduction , Kinetics , Cyclooctanes/chemistry , Cyclooctanes/therapeutic use
4.
Chembiochem ; 23(20): e202200363, 2022 10 19.
Article in English | MEDLINE | ID: mdl-35921044

ABSTRACT

Bond-cleavage reactions triggered by bioorthogonal tetrazine ligation have emerged as strategies to chemically control the function of (bio)molecules and achieve activation of prodrugs in living systems. While most of these approaches make use of caged amines, current methods for the release of phenols are limited by unfavorable reaction kinetics or insufficient stability of the Tz-responsive reactants. To address this issue, we have implemented a self-immolative linker that enables the connection of cleavable trans-cyclooctenes (TCO) and phenols via carbamate linkages. Based on detailed investigation of the reaction mechanism with several Tz, revealing up to 96 % elimination after 2 hours, we have developed a TCO-caged prodrug with 750-fold reduced cytotoxicity compared to the parent drug and achieved in situ activation upon Tz/TCO click-to-release.


Subject(s)
Heterocyclic Compounds , Prodrugs , Phenols , Heterocyclic Compounds/chemistry , Cyclooctanes/chemistry , Amines , Carbamates , Cell Line, Tumor
5.
Nat Biotechnol ; 40(11): 1654-1662, 2022 11.
Article in English | MEDLINE | ID: mdl-35654978

ABSTRACT

Cells in complex organisms undergo frequent functional changes, but few methods allow comprehensive longitudinal profiling of living cells. Here we introduce scission-accelerated fluorophore exchange (SAFE), a method for multiplexed temporospatial imaging of living cells with immunofluorescence. SAFE uses a rapid bioorthogonal click chemistry to remove immunofluorescent signals from the surface of labeled cells, cycling the nanomolar-concentration reagents in seconds and enabling multiple rounds of staining of the same samples. It is non-toxic and functional in both dispersed cells and intact living tissues. We demonstrate multiparameter (n ≥ 14), non-disruptive imaging of murine peripheral blood mononuclear and bone marrow cells to profile cellular differentiation. We also show longitudinal multiplexed imaging of bone marrow progenitor cells as they develop into neutrophils over 6 days and real-time multiplexed cycling of living mouse hepatic tissues. We anticipate that SAFE will find broad utility for investigating physiologic dynamics in living systems.


Subject(s)
Fluorescent Dyes , Leukocytes, Mononuclear , Mice , Animals , Fluorescent Dyes/chemistry , Staining and Labeling , Optical Imaging/methods , Fluorescent Antibody Technique
6.
J Am Chem Soc ; 144(18): 8171-8177, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35500228

ABSTRACT

The tetrazine/trans-cyclooctene ligation stands out from the bioorthogonal toolbox due to its exceptional reaction kinetics, enabling multiple molecular technologies in vitro and in living systems. Highly reactive 2-pyridyl-substituted tetrazines have become state of the art for time-critical processes and selective reactions at very low concentrations. It is widely accepted that the enhanced reactivity of these chemical tools is attributed to the electron-withdrawing effect of the heteroaryl substituent. In contrast, we show that the observed reaction rates are way too high to be explained on this basis. Computational investigation of this phenomenon revealed that distortion of the tetrazine caused by intramolecular repulsive N-N interaction plays a key role in accelerating the cycloaddition step. We show that the limited stability of tetrazines in biological media strongly correlates with the electron-withdrawing effect of the substituent, while intramolecular repulsion increases the reactivity without reducing the stability. These fundamental insights reveal thus far overlooked mechanistic aspects that govern the reactivity/stability trade-off for tetrazines in physiologically relevant environments, thereby providing a new strategy that may facilitate the rational design of these bioorthogonal tools.


Subject(s)
Heterocyclic Compounds , Cycloaddition Reaction , Electrons , Heterocyclic Compounds/chemistry , Kinetics
7.
Sci Adv ; 8(17): eabl6339, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35486732

ABSTRACT

BRAF-targeted kinase inhibitors (KIs) are used to treat malignancies including BRAF-mutant non-small cell lung cancer, colorectal cancer, anaplastic thyroid cancer, and, most prominently, melanoma. However, KI selection criteria in patients remain unclear, as are pharmacokinetic/pharmacodynamic (PK/PD) mechanisms that may limit context-dependent efficacy and differentiate related drugs. To address this issue, we imaged mouse models of BRAF-mutant cancers, fluorescent KI tracers, and unlabeled drug to calibrate in silico spatial PK/PD models. Results indicated that drug lipophilicity, plasma clearance, faster target dissociation, and, in particular, high albumin binding could limit dabrafenib action in visceral metastases compared to other KIs. This correlated with retrospective clinical observations. Computational modeling identified a timed strategy for combining dabrafenib and encorafenib to better sustain BRAF inhibition, which showed enhanced efficacy in mice. This study thus offers principles of spatial drug action that may help guide drug development, KI selection, and combination.

9.
Bioconjug Chem ; 33(4): 608-624, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35290735

ABSTRACT

Tetrazines (Tz) have been applied as bioorthogonal agents for various biomedical applications, including pretargeted imaging approaches. In radioimmunoimaging, pretargeting increases the target-to-background ratio while simultaneously reducing the radiation burden. We have recently reported a strategy to directly 18F-label highly reactive tetrazines based on a 3-(3-fluorophenyl)-Tz core structure. Herein, we report a kinetic study on this versatile scaffold. A library of 40 different tetrazines was prepared, fully characterized, and investigated with an emphasis on second-order rate constants for the reaction with trans-cyclooctene (TCO). Our results reveal the effects of various substitution patterns and moreover demonstrate the importance of measuring reactivities in the solvent of interest, as click rates in different solvents do not necessarily correlate well. In particular, we report that tetrazines modified in the 2-position of the phenyl substituent show high intrinsic reactivity toward TCO, which is diminished in aqueous systems by unfavorable solvent effects. The obtained results enable the prediction of the bioorthogonal reactivity and thereby facilitate the development of the next generation of substituted aryltetrazines for in vivo applications.


Subject(s)
Diagnostic Imaging , Cell Line, Tumor , Solvents
10.
Chem Sci ; 12(35): 11668-11675, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34659701

ABSTRACT

Pretargeted imaging can be used to visualize and quantify slow-accumulating targeting vectors with short-lived radionuclides such as fluorine-18 - the most popular clinically applied Positron Emission Tomography (PET) radionuclide. Pretargeting results in higher target-to-background ratios compared to conventional imaging approaches using long-lived radionuclides. Currently, the tetrazine ligation is the most popular bioorthogonal reaction for pretargeted imaging, but a direct 18F-labeling strategy for highly reactive tetrazines, which would be highly beneficial if not essential for clinical translation, has thus far not been reported. In this work, a simple, scalable and reliable direct 18F-labeling procedure has been developed. We initially studied the applicability of different leaving groups and labeling methods to develop this procedure. The copper-mediated 18F-labeling exploiting stannane precursors showed the most promising results. This approach was then successfully applied to a set of tetrazines, including highly reactive H-tetrazines, suitable for pretargeted PET imaging. The labeling succeeded in radiochemical yields (RCYs) of up to approx. 25%. The new procedure was then applied to develop a pretargeting tetrazine-based imaging agent. The tracer was synthesized in a satisfactory RCY of ca. 10%, with a molar activity of 134 ± 22 GBq µmol-1 and a radiochemical purity of >99%. Further evaluation showed that the tracer displayed favorable characteristics (target-to-background ratios and clearance) that may qualify it for future clinical translation.

11.
J Med Chem ; 64(20): 15297-15312, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34649424

ABSTRACT

Pretargeted imaging of nanomedicines have attracted considerable interest because it has the potential to increase imaging contrast while reducing radiation burden to healthy tissue. Currently, the tetrazine ligation is the fastest bioorthogonal reaction for this strategy and, consequently, the state-of-art choice for in vivo chemistry. We have recently identified key properties for tetrazines in pretargeting. We have also developed a method to 18F-label reactive tetrazines using an aliphatic nucleophilic substitution strategy. Here, we combined this knowledge and developed an 18F-labeled tetrazine for pretargeted imaging. In order to develop this ligand, a small SAR study was performed. The most promising compound was selected for labeling and subsequent positron-emission-tomography in vivo imaging. Radiolabeling was achieved in satisfactory yields, molar activities, and high radiochemical purities. [18F]15 displayed favorable pharmacokinetics and remarkable target-to-background ratios-as early as 1 h post injection. We believe that this agent could be a promising candidate for translation into clinical studies.


Subject(s)
Drug Development , Neoplasms, Experimental/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Animals , Cell Line, Tumor , Female , Fluorine Radioisotopes , Humans , Isotope Labeling , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Radiopharmaceuticals/chemistry
12.
Nat Nanotechnol ; 16(7): 830-839, 2021 07.
Article in English | MEDLINE | ID: mdl-33958764

ABSTRACT

Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy. In contrast, a targeted screen revealed that IGF1R kinase inhibitors enhance uptake and efficacy of nab-PTX by mimicking glucose deprivation and promoting macropinocytosis via AMPK, a nutrient sensor in cells. This study thus shows how nanoparticulate albumin bound drug efficacy can be therapeutically improved by reprogramming nutrient signalling and enhancing macropinocytosis in cancer cells.


Subject(s)
MAP Kinase Signaling System/drug effects , Mutation , Nanoparticles , Neoplasms, Experimental/drug therapy , Paclitaxel , Proto-Oncogene Proteins p21(ras)/genetics , Serum Albumin, Human , Animals , Cell Line, Tumor , Glucose/deficiency , Glucose/metabolism , Humans , Mice , Mice, Transgenic , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology , Pinocytosis , Proto-Oncogene Proteins p21(ras)/metabolism , RAW 264.7 Cells , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
13.
ACS Pharmacol Transl Sci ; 4(2): 824-833, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33860205

ABSTRACT

The development of highly selective and fast biocompatible reactions for ligation and cleavage has paved the way for new diagnostic and therapeutic applications of pretargeted in vivo chemistry. The concept of bioorthogonal pretargeting has attracted considerable interest, in particular for the targeted delivery of radionuclides and drugs. In nuclear medicine, pretargeting can provide increased target-to-background ratios at early time-points compared to traditional approaches. This reduces the radiation burden to healthy tissue and, depending on the selected radionuclide, enables better imaging contrast or higher therapeutic efficiency. Moreover, bioorthogonally triggered cleavage of pretargeted antibody-drug conjugates represents an emerging strategy to achieve controlled release and locally increased drug concentrations. The toolbox of bioorthogonal reactions has significantly expanded in the past decade, with the tetrazine ligation being the fastest and one of the most versatile in vivo chemistries. Progress in the field, however, relies heavily on the development and evaluation of (radio)labeled compounds, preventing the use of compound libraries for systematic studies. The rational design of tetrazine probes and triggers has thus been impeded by the limited understanding of the impact of structural parameters on the in vivo ligation performance. In this work, we describe the development of a pretargeted blocking assay that allows for the investigation of the in vivo fate of a structurally diverse library of 45 unlabeled tetrazines and their capability to reach and react with pretargeted trans-cyclooctene (TCO)-modified antibodies in tumor-bearing mice. This study enabled us to assess the correlation of click reactivity and lipophilicity of tetrazines with their in vivo performance. In particular, high rate constants (>50 000 M-1 s-1) for the reaction with TCO and low calculated logD 7.4 values (below -3) of the tetrazine were identified as strong indicators for successful pretargeting. Radiolabeling gave access to a set of selected 18F-labeled tetrazines, including highly reactive scaffolds, which were used in pretargeted PET imaging studies to confirm the results from the blocking study. These insights thus enable the rational design of tetrazine probes for in vivo application and will thereby assist the clinical translation of bioorthogonal pretargeting.

14.
J Am Chem Soc ; 142(45): 19132-19141, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33119297

ABSTRACT

Bioorthogonal chemistry is bridging the divide between static chemical connectivity and the dynamic physiologic regulation of molecular state, enabling in situ transformations that drive multiple technologies. In spite of maturing mechanistic understanding and new bioorthogonal bond-cleavage reactions, the broader goal of molecular ON/OFF control has been limited by the inability of existing systems to achieve both fast (i.e., seconds to minutes, not hours) and complete (i.e., >99%) cleavage. To attain the stringent performance characteristics needed for high fidelity molecular inactivation, we have designed and synthesized a new C2-symmetric trans-cyclooctene linker (C2TCO) that exhibits excellent biological stability and can be rapidly and completely cleaved with functionalized alkyl-, aryl-, and H-tetrazines, irrespective of click orientation. By incorporation of C2TCO into fluorescent molecular probes, we demonstrate highly efficient extracellular and intracellular bioorthogonal disassembly via omnidirectional tetrazine-triggered cleavage.


Subject(s)
Cyclooctanes/chemistry , Molecular Probes/chemistry , Antibodies/chemistry , Antibodies/metabolism , Carbon/chemistry , Click Chemistry , Fluorescent Dyes/chemistry , Isomerism
15.
Chemistry ; 26(44): 9851-9854, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-31944448

ABSTRACT

The strain-promoted azide alkyne cycloaddition (SPAAC) is a powerful tool for forming covalent bonds between molecules even under physiological conditions, and therefore found broad application in fields ranging from biological chemistry and biomedical research to materials sciences. For many applications, knowledge about reaction kinetics of these ligations is of utmost importance. Kinetics are commonly assessed and studied by NMR measurements. However, these experiments are limited in terms of temperature and restricted to deuterated solvents. By using an inline ATR-IR probe we show that the cycloaddition of azides and alkynes can be monitored in aqueous and even complex biological fluids enabling the investigation of reaction kinetics in various solvents and even human blood plasma under controlled conditions in low reaction volumes.

16.
Chem Sci ; 11(47): 12671-12676, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-34094461

ABSTRACT

We report on the unexpected finding that click modification of iduronyl azides results in a conformational flip of the pyranose ring, which led to the development of a new strategy for the design of superior enzyme substrates for the diagnostic assaying of iduronate-2-sulfatase (I2S), a lysosomal enzyme related to Hunter syndrome. Synthetic substrates are essential in testing newborns for metabolic disorders to enable early initiation of therapy. Our click-flipped iduronyl triazole showed a remarkably better performance with I2S than commonly used O-iduronates. We found that both O- and triazole-linked substrates are accepted by the enzyme, irrespective of their different conformations, but only the O-linked product inhibits the activity of I2S. Thus, in the long reaction times required for clinical assays, the triazole substrate substantially outperforms the O-iduronate. Applying our click-flipped substrate to assay I2S in dried blood spots sampled from affected patients and random newborns significantly increased the confidence in discriminating between these groups, clearly indicating the potential of the click-flip strategy to control the biomolecular function of carbohydrates.

17.
ACS Nano ; 14(1): 568-584, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31820928

ABSTRACT

Tumor targeting using agents with slow pharmacokinetics represents a major challenge in nuclear imaging and targeted radionuclide therapy as they most often result in low imaging contrast and high radiation dose to healthy tissue. To address this challenge, we developed a polymer-based targeting agent that can be used for pretargeted imaging and thus separates tumor accumulation from the imaging step in time. The developed targeting agent is based on polypeptide-graft-polypeptoid polymers (PeptoBrushes) functionalized with trans-cyclooctene (TCO). The complementary 111In-labeled imaging agent is a 1,2,4,5-tetrazine derivative, which can react with aforementioned TCO-modified PeptoBrushes in a rapid bioorthogonal ligation. A high degree of TCO loading (up to 30%) was achieved, without altering the physicochemical properties of the polymeric nanoparticle. The highest degree of TCO loading resulted in significantly increased reaction rates (77-fold enhancement) compared to those with small molecule TCO moieties when using lipophilic tetrazines. Based on computer simulations, we hypothesize that this increase is a result of hydrophobic effects and significant rearrangements within the polymer framework, in which hydrophobic patches of TCO moieties are formed. These patches attract lipophilic tetrazines, leading to increased reaction rates in the bioorthogonal ligation. The most reactive system was evaluated as a targeting agent for pretargeted imaging in tumor-bearing mice. After the setup was optimized, sufficient tumor-to-background ratios were achieved as early as 2 h after administration of the tetrazine imaging agent, which further improved at 22 h, enabling clear visualization of CT-26 tumors. These findings show the potential of PeptoBrushes to be used as a pretargeting agent when an optimized dose of polymer is used.


Subject(s)
Aza Compounds/chemistry , Benzene Derivatives/chemistry , Colonic Neoplasms/diagnostic imaging , Cyclooctanes/chemistry , Optical Imaging , Peptides/chemistry , Peptoids/chemistry , Animals , Aza Compounds/pharmacokinetics , Benzene Derivatives/pharmacokinetics , Cell Line, Tumor , Cyclooctanes/pharmacokinetics , Indium Radioisotopes/chemistry , Kinetics , Mice , Molecular Structure , Particle Size , Peptides/pharmacokinetics , Peptoids/pharmacokinetics , Proton Magnetic Resonance Spectroscopy , Surface Properties , Tissue Distribution
19.
Chempluschem ; 84(7): 775-778, 2019 07.
Article in English | MEDLINE | ID: mdl-31681526

ABSTRACT

In the past decade, several developments have expanded the chemical toolbox for astatination and the preparation of 211At-labeled radiopharmaceuticals. However, there is still a need for advanced methods for the synthesis of astatinated (bio)molecules to address challenges such as limited in vivo stability. Herein, we report the development of multifunctional 211At-labeled reagents that can be prepared by applying a modular and versatile click approach for rapid assembly. The introduction of tetrazines as bioorthogonal tags enables rapid radiolabeling and radio-crosslinking, which is demonstrated by steric shielding of 211At to significantly increase label stability in human blood plasma.


Subject(s)
Click Chemistry/methods , Radiopharmaceuticals/chemistry , Astatine/chemistry , Half-Life , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Isotope Labeling , Radiopharmaceuticals/blood , Radiopharmaceuticals/chemical synthesis
20.
Chem Commun (Camb) ; 55(83): 12543-12546, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31576821

ABSTRACT

By reviving an old idea, we demonstrate that alkoxycarbonyl groups can be used in glycosylation reactions to achieve full stereocontrol through participation of a carbonate moiety at O-2. Various benzyloxycarbonyl-protected glycosyl donors were prepared and used for efficient 1,2-trans glycosylation of base-labile compounds and the synthesis of glycosyl esters.

SELECTION OF CITATIONS
SEARCH DETAIL
...