Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Stapp Car Crash J ; 67: 1-13, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513070

ABSTRACT

Predicting airbag deployment geometries is an important task for airbag and vehicle designers to meet safety standards based on biomechanical injury risk functions. This prediction is also an extraordinarily complex problem given the number of disciplines and their interactions. State-of-the-art airbag deployment geometry simulations (including time history) entail large, computationally expensive numerical methods such as finite element analysis (FEA) and computational fluid dynamics (CFD), among others. This complexity results in exceptionally large simulation times, making thorough exploration of the design space prohibitive. This paper proposes new parametric simulation models which drastically accelerate airbag deployment geometry predictions while maintaining the accuracy of the airbag deployment geometry at reasonable levels; these models, called herein machine learning (ML)-accelerated models, blend physical system modes with data-driven techniques to accomplish fast predictions within a design space defined by airbag and impactor parameters. These ML-accelerated models are evaluated with virtual test cases of increasing complexity: from airbag deployments against a locked deformable obstacle to airbag deployments against free rigid obstacles; the dimension of the tested design spaces is up to six variables. ML training times are documented for completeness; thus, airbag design explorers or optimization engineers can assess the full budget for ML-accelerated approaches including training. In these test cases, the ML-accelerated simulation models run three orders of magnitude faster than the high-fidelity multi-physics methods, while accuracies are kept within reasonable levels within the design space.


Subject(s)
Air Bags , Computer Simulation , Machine Learning , Humans , Equipment Design , Accidents, Traffic , Finite Element Analysis , Models, Theoretical
2.
Crit Care Explor ; 6(2): e1039, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343444

ABSTRACT

OBJECTIVES: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. DESIGN: Retrospective observational cohort study. SETTING: Twenty-four Italian ICUs from February 2020 to May 2020. PATIENTS: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. INTERVENTION: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. MEASUREMENTS AND MAIN RESULTS: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p < 0.001), an extended ICU length of stay (successful vs. failure 21 ± 14 vs. 27 ± 17 d; p < 0.001) and a longer duration of mechanical ventilation (19 ± 18 vs. 24 ± 17 d, p = 0.04). CONCLUSIONS: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes.

3.
Brain Sci ; 14(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38391722

ABSTRACT

BACKGROUND: In Awake Craniotomy (AC), α2-agonists and remifentanil (clonidine and dexmedetomidine) are used in the preoperative phase and throughout the procedure to combine monitored anesthesia care and local anesthesia. The study aims were to specify the key role of α2-agonists administered and to evaluate complication presence/absence in anesthesiologic management. METHODS: 42 patients undergoing AC in 3 different centers in the south of Italy (Foggia, San Giovanni Rotondo, and Bari) were recruited. Our protocol involves analgo-sedation by administering Dexmedetomidine and Remifentanil in continuous intravenous infusion, allowing the patient to be sedated and in comfort but contactable and spontaneously breathing. During pre-surgery, the patient is premedicated with intramuscular clonidine (2 µg/kg). In the operating setting, Dexmedetomidine in infusion and Remifentanil in Target Controlled Infusion for effect are started. At the end of the surgical procedure, the infusion of drugs was suspended. RESULTS: There were no intraoperative side effects. The mean duration of interventions was 240 ± 62 min. The average quantity of Remifentanil and Dexmedetomidine infused during interventions were 4.2 ± 1.3 mg and 1.0 ± 0.3 mg, respectively. No significant side effects were described in the post-operative phase. A total of 86% of patients and 93% of surgeons were totally satisfied. CONCLUSIONS: Synergy between opioid drugs and α2 agonists plays a fundamental role in ensuring procedure success.

4.
Lancet Respir Med ; 12(3): 195-206, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065200

ABSTRACT

BACKGROUND: It is uncertain whether individualisation of the perioperative open-lung approach (OLA) to ventilation reduces postoperative pulmonary complications in patients undergoing lung resection. We compared a perioperative individualised OLA (iOLA) ventilation strategy with standard lung-protective ventilation in patients undergoing thoracic surgery with one-lung ventilation. METHODS: This multicentre, randomised controlled trial enrolled patients scheduled for open or video-assisted thoracic surgery using one-lung ventilation in 25 participating hospitals in Spain, Italy, Turkey, Egypt, and Ecuador. Eligible adult patients (age ≥18 years) were randomly assigned to receive iOLA or standard lung-protective ventilation. Eligible patients (stratified by centre) were randomly assigned online by local principal investigators, with an allocation ratio of 1:1. Treatment with iOLA included an alveolar recruitment manoeuvre to 40 cm H2O of end-inspiratory pressure followed by individualised positive end-expiratory pressure (PEEP) titrated to best respiratory system compliance, and individualised postoperative respiratory support with high-flow oxygen therapy. Participants allocated to standard lung-protective ventilation received combined intraoperative 4 cm H2O of PEEP and postoperative conventional oxygen therapy. The primary outcome was a composite of severe postoperative pulmonary complications within the first 7 postoperative days, including atelectasis requiring bronchoscopy, severe respiratory failure, contralateral pneumothorax, early extubation failure (rescue with continuous positive airway pressure, non-invasive ventilation, invasive mechanical ventilation, or reintubation), acute respiratory distress syndrome, pulmonary infection, bronchopleural fistula, and pleural empyema. Due to trial setting, data obtained in the operating and postoperative rooms for routine monitoring were not blinded. At 24 h, data were acquired by an investigator blinded to group allocation. All analyses were performed on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, NCT03182062, and is complete. FINDINGS: Between Sept 11, 2018, and June 14, 2022, we enrolled 1380 patients, of whom 1308 eligible patients (670 [434 male, 233 female, and three with missing data] assigned to iOLA and 638 [395 male, 237 female, and six with missing data] to standard lung-protective ventilation) were included in the final analysis. The proportion of patients with the composite outcome of severe postoperative pulmonary complications within the first 7 postoperative days was lower in the iOLA group compared with the standard lung-protective ventilation group (40 [6%] vs 97 [15%], relative risk 0·39 [95% CI 0·28 to 0·56]), with an absolute risk difference of -9·23 (95% CI -12·55 to -5·92). Recruitment manoeuvre-related adverse events were reported in five patients. INTERPRETATION: Among patients subjected to lung resection under one-lung ventilation, iOLA was associated with a reduced risk of severe postoperative pulmonary complications when compared with conventional lung-protective ventilation. FUNDING: Instituto de Salud Carlos III and the European Regional Development Funds.


Subject(s)
One-Lung Ventilation , Adult , Humans , Female , Male , Adolescent , Respiration , Continuous Positive Airway Pressure , Lung/surgery , Oxygen
5.
J Clin Med ; 12(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38068519

ABSTRACT

BACKGROUND: Both general anesthesia and pneumoperitoneum insufflation during abdominal laparoscopic surgery can lead to atelectasis and impairment in oxygenation. Setting an appropriate level of external PEEP could reduce the occurrence of atelectasis and induce an improvement in gas exchange. However, in clinical practice, it is common to use a fixed PEEP level (i.e., 5 cmH2O), irrespective of the dynamic respiratory mechanics. We hypothesized setting a PEEP level guided by EIT in order to obtain an improvement in oxygenation and respiratory system compliance in lung-healthy patients than can benefit a personalized approach. METHODS: Twelve consecutive patients scheduled for abdominal laparoscopic surgery were enrolled in this prospective study. The EIT Timpel Enlight 1800 was applied to each patient and a dedicated pneumotachograph and a spirometer flow sensor, integrated with EIT, constantly recorded respiratory mechanics. Gas exchange, respiratory mechanics and hemodynamics were recorded at five time points: T0, baseline; T1, after induction; T2, after pneumoperitoneum insufflation; T3, after a recruitment maneuver; and T4, at the end of surgery after desufflation. RESULTS: A titrated mean PEEP of 8 cmH2O applied after a recruitment maneuver was successfully associated with the "best" compliance (58.4 ± 5.43 mL/cmH2O), with a low percentage of collapse (10%), an acceptable level of hyperdistention (0.02%). Pneumoperitoneum insufflation worsened respiratory system compliance, plateau pressure, and driving pressure, which significantly improved after the application of the recruitment maneuver and appropriate PEEP. PaO2 increased from 78.1 ± 9.49 mmHg at T0 to 188 ± 66.7 mmHg at T4 (p < 0.01). Other respiratory parameters remained stable after abdominal desufflation. Hemodynamic parameters remained unchanged throughout the study. CONCLUSIONS: EIT, used as a non-invasive intra-operative monitor, enables the rapid assessment of lung volume and regional ventilation changes in patients undergoing laparoscopic surgery and helps to identify the "optimal" PEEP level in the operating theatre, improving ventilation strategies.

6.
Sci Rep ; 13(1): 23045, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38155193

ABSTRACT

Postoperative elevation of serum aminotransferase or alkaline phosphatase levels after liver and heart surgeries has been widely reported. The prevalence and clinical significance of hypertransaminasemia/liver dysfunction after thoracic surgery remains largely unknown. Significant differences in surgical procedures between thoracic and extra-thoracic surgeries may suggest different risks of liver dysfunction. We retrospectively analyzed data from 224 consecutive patients who underwent thoracic surgery. Liver function tests were recorded the day before surgery, 12 h, 1 day, 5, and 10 days after the surgical procedure. Patients were studied to identify the frequency of hypertransaminasemia and/or hyperbilirubinemia and/or increase of INR levels. 37,5% of patients showed an increase in serum alanine aminotransferase (ALT) level after thoracic surgery, whereas an increase in gamma glutamyl transferase (GGT) serum levels of any grade was observed in 53,6% of patients. Approximately 83% of patients who experienced an increase in the serum GGT or ALT levels showed a grade 1 or 2 change. Operative time was associated with hypertransaminasemia in the univariate and multivariate analyses, whereas the use of metformin was associated with a lower risk of ALT increase.


Subject(s)
Liver Diseases , Thoracic Surgery , Humans , Retrospective Studies , Clinical Relevance , Prevalence , Liver/surgery , Liver Diseases/epidemiology , Liver Diseases/surgery , Alanine Transaminase
7.
Minerva Anestesiol ; 89(11): 964-976, 2023 11.
Article in English | MEDLINE | ID: mdl-37671537

ABSTRACT

BACKGROUND: Postoperative pulmonary complications (PPCs) significantly contribute to postoperative morbidity and mortality. We conducted a study to determine the incidence of PPCs after major elective abdominal surgery and their association with early and 1-year mortality in patient without pre-existing respiratory disease. METHODS: We conducted a multicenter observational prospective clinical study in 40 Italian centers. 1542 patients undergoing elective major abdominal surgery were recruited in a time period of 14 days and clinically managed according to local protocol. The primary outcome was to determine the incidence of PPCs. Further, we aimed to identify independent predictors for PPCs and examine the association between PPCs and mortality. RESULTS: PPCs occurred in 12.6% (95% CI 11.1-14.4%) of patients with significant differences among general (18.3%, 95% CI 15.7-21.0%), gynecological (3.7%, 95% CI 2.1-6.0%) and urological surgery (9.0%, 95% CI 6.0-12.8%). PPCs development was associated with known pre- and intraoperative risk factors. Patients who developed PPCs had longer length of hospital stay, higher risk of 30-days hospital readmission, and increased in-hospital and one-year mortality (OR 3.078, 95% CI 1.825-5.191; P<0.001). CONCLUSIONS: The incidence of PPCs in patients without pre-existing respiratory disease undergoing elective abdominal surgery is high and associated with worse clinical outcome at one year after surgery. General surgery is associated with higher incidence of PPCs and mortality compared to gynecological and urological surgery.


Subject(s)
Lung , Postoperative Complications , Humans , Prospective Studies , Postoperative Complications/etiology , Abdomen/surgery , Risk Factors
8.
J Anesth Analg Crit Care ; 2(1): 42, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-37386654

ABSTRACT

BACKGROUND: Since January 2020, coronavirus disease 19 (COVID-19) has rapidly spread all over the world. An early assessment of illness severity is crucial for the stratification of patients in order to address them to the right intensity path of care. We performed an analysis on a large cohort of COVID-19 patients (n=581) hospitalized between March 2020 and May 2021 in our intensive care unit (ICU) at Policlinico Riuniti di Foggia hospital. Through an integration of the scores, demographic data, clinical history, laboratory findings, respiratory parameters, a correlation analysis, and the use of machine learning our study aimed to develop a model to predict the main outcome. METHODS: We deemed eligible for analysis all adult patients (age >18 years old) admitted to our department. We excluded all the patients with an ICU length of stay inferior to 24 h and the ones that declined to participate in our data collection. We collected demographic data, medical history, D-dimers, NEWS2, and MEWS scores on ICU admission and on ED admission, PaO2/FiO2 ratio on ICU admission, and the respiratory support modalities before the orotracheal intubation and the intubation timing (early vs late with a 48-h hospital length of stay cutoff). We further collected the ICU and hospital lengths of stay expressed in days of hospitalization, hospital location (high dependency unit, HDU, ED), and length of stay before and after ICU admission; the in-hospital mortality; and the in-ICU mortality. We performed univariate, bivariate, and multivariate statistical analyses. RESULTS: SARS-CoV-2 mortality was positively correlated to age, length of stay in HDU, MEWS, and NEWS2 on ICU admission, D-dimer value on ICU admission, early orotracheal intubation, and late orotracheal intubation. We found a negative correlation between the PaO2/FiO2 ratio on ICU admission and NIV. No significant correlations with sex, obesity, arterial hypertension, chronic obstructive pulmonary disease, chronic kidney disease, cardiovascular disease, diabetes mellitus, dyslipidemia, and neither MEWS nor NEWS on ED admission were observed. Considering all the pre-ICU variables, none of the machine learning algorithms performed well in developing a prediction model accurate enough to predict the outcome although a secondary multivariate analysis focused on the ventilation modalities and the main outcome confirmed how the choice of the right ventilatory support with the right timing is crucial. CONCLUSION: In our cohort of COVID patients, the choice of the right ventilatory support at the right time has been crucial, severity scores, and clinical judgment gave support in identifying patients at risk of developing a severe disease, comorbidities showed a lower weight than expected considering the main outcome, and machine learning method integration could be a fundamental statistical tool in the comprehensive evaluation of such complex diseases.

10.
Am J Trop Med Hyg ; 105(6): 1490-1497, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34662857

ABSTRACT

Lung ultrasound (LUS) can be used to assess loss of aeration, which is associated with outcome in patients with coronavirus disease 2019 (COVID-19) presenting to the emergency department. We hypothesized that LUS scores are associated with outcome in critically ill COVID-19 patients receiving invasive ventilation. This retrospective international multicenter study evaluated patients with COVID-19-related acute respiratory distress syndrome (ARDS) with at least one LUS study within 5 days after invasive mechanical ventilation initiation. The global LUS score was calculated by summing the 12 regional scores (range 0-36). Pleural line abnormalities and subpleural consolidations were also scored. The outcomes were successful liberation from the ventilator and intensive care mortality within 28 days, analyzed with multistate, competing risk proportional hazard models. One hundred thirty-seven patients with COVID-19-related ARDS were included in our study. The global LUS score was associated with successful liberation from mechanical ventilation (hazard ratio [HR]: 0.91 95% confidence interval [CI] 0.87-0.96; P = 0.0007) independently of the ARDS severity, but not with 28 days mortality (HR: 1.03; 95% CI 0.97-1.08; P = 0.36). Subpleural consolidation and pleural line abnormalities did not add to the prognostic value of the global LUS score. Examinations within 24 hours of intubation showed no prognostic value. To conclude, a lower global LUS score 24 hours after invasive ventilation initiation is associated with increased probability of liberation from the mechanical ventilator COVID-19 ARDS patients, independently of the ARDS severity.


Subject(s)
Airway Extubation , COVID-19/pathology , COVID-19/therapy , Lung/pathology , SARS-CoV-2 , Ultrasonography , Aged , Cohort Studies , Female , Humans , Internationality , Male , Middle Aged
11.
Front Physiol ; 12: 728243, 2021.
Article in English | MEDLINE | ID: mdl-34566690

ABSTRACT

Background: Different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia phenotypes were described that match with different lung compliance and level of oxygenation, thus requiring a personalized ventilator setting. The burden of so many patients and the lack of intensive care unit (ICU) beds often force physicians to choose non-invasive ventilation (NIV) as the first approach, even if no consent has still been reached to discriminate whether it is safer to choose straightforward intubation, paralysis, and protective ventilation. Under such conditions, electrical impedance tomography (EIT), a non-invasive bedside tool to monitor lung ventilation and perfusion defects, could be useful to assess the response of patients to NIV and choose rapidly the right ventilatory strategy. Objective: The rationale behind this study is that derecruitment is a more efficient measure of positive end expiratory pressure (PEEP)-dependency of patients than recruitment. We hypothesized that patients who derecruit significantly when PEEP is reduced are the ones that do not need early intubation while small end-expiratory lung volume (ΔEELV) variations after a single step of PEEP de-escalation could be predictive of NIV failure. Materials and Methods: Consecutive patients admitted to ICU with confirmed SARS-CoV-2 pneumonia ventilated in NIV were enrolled. Exclusion criteria were former intubation or NIV lasting > 72 h. A trial of continuos positive airway pressure (CPAP) 12 was applied in every patient for at least 15 min, followed by the second period of CPAP 6, either in the supine or prone position. Besides standard monitoring, ventilation of patients was assessed by EIT, and end-expiratory lung impedance (ΔEELI) (%) was calculated as the difference in EELI between CPAP12 and CPAP6. Tidal volume (Vt), Ve, respiratory rate (RR), and FiO2 were recorded, and ABGs were measured. Data were analyzed offline using the dedicated software. The decision to intubate or continue NIV was in charge of treating physicians, independently from study results. Outcomes of patients in terms of intubation rate and ICU mortality were recorded. Results: We enrolled 10 male patients, with a mean age of 67 years. Six patients (60%) were successfully treated by NIV until ICU discharge (Group S), and four patients failed NIV and were intubated and switched to MV (Group F). All these patients died in ICU. During the supine CPAP decremental trial, all patients experienced an increase in RR and Ve. ΔEELI was < 40% in Group F and > 50% in Group S. In the prone trial, ΔEELI was > 50% in all patients, while RR decreased in Group S and remained unchanged in Group F. Conclusion: ΔEELI < 40% after a single PEEP de-escalation step in supine position seems to be a good predictor of poor recruitment and CPAP failure.

12.
Intensive Care Med ; 47(9): 995-1008, 2021 09.
Article in English | MEDLINE | ID: mdl-34373952

ABSTRACT

PURPOSE: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). METHODS: In this retrospective-prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. RESULTS: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55-69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89-175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil-lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. CONCLUSION: Daily values or trends over time of parameters associated with acute organ dysfunction, acid-base derangement, coagulation impairment, or systemic inflammation were associated with patient survival.


Subject(s)
COVID-19 , Critical Illness , Aged , Humans , Intensive Care Units , Italy , Male , Middle Aged , Prospective Studies , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2
13.
J Clin Med ; 10(16)2021 Aug 08.
Article in English | MEDLINE | ID: mdl-34441796

ABSTRACT

INTRODUCTION: Adjunctive therapy with polyclonal intravenous immunoglobins (IVIg) is currently used for preventing or managing infections and sepsis, especially in immunocompromised patients. The pathobiology of COVID-19 and the mechanisms of action of Ig led to the consideration of this adjunctive therapy, including in patients with respiratory failure due to the SARS-CoV-2 infection. This manuscript reports the rationale, the available data and the results of a structured consensus on intravenous Ig therapy in patients with severe COVID-19. METHODS: A panel of multidisciplinary experts defined the clinical phenotypes of COVID-19 patients with severe respiratory failure and, after literature review, voted for the agreement on the rationale and the potential role of IVIg therapy for each phenotype. Due to the scarce evidence available, a modified RAND/UCLA appropriateness method was used. RESULTS: Three different phenotypes of COVID-19 patients with severe respiratory failure were identified: patients with an abrupt and dysregulated hyperinflammatory response (early phase), patients with suspected immune paralysis (late phase) and patients with sepsis due to a hospital-acquired superinfection (sepsis by bacterial superinfection). The rationale for intravenous Ig therapy in the early phase was considered uncertain whereas the panelists considered its use in the late phase and patients with sepsis/septic shock by bacterial superinfection appropriate. CONCLUSION: As with other immunotherapies, IVIg adjunctive therapy may have a potential role in the management of COVID-19 patients. The ongoing trials will clarify the appropriate target population and the true effectiveness.

14.
J Clin Med ; 10(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208699

ABSTRACT

Mechanical ventilation (MV) is still necessary in many surgical procedures; nonetheless, intraoperative MV is not free from harmful effects. Protective ventilation strategies, which include the combination of low tidal volume and adequate positive end expiratory pressure (PEEP) levels, are usually adopted to minimize the ventilation-induced lung injury and to avoid post-operative pulmonary complications (PPCs). Even so, volutrauma and atelectrauma may co-exist at different levels of tidal volume and PEEP, and therefore, the physiological response to the MV settings should be monitored in each patient. A personalized perioperative approach is gaining relevance in the field of intraoperative MV; in particular, many efforts have been made to individualize PEEP, giving more emphasis on physiological and functional status to the whole body. In this review, we summarized the latest findings about the optimization of PEEP and intraoperative MV in different surgical settings. Starting from a physiological point of view, we described how to approach the individualized MV and monitor the effects of MV on lung function.

16.
Crit Care ; 25(1): 128, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33823862

ABSTRACT

BACKGROUND: Limited data are available on the use of prone position in intubated, invasively ventilated patients with Coronavirus disease-19 (COVID-19). Aim of this study is to investigate the use and effect of prone position in this population during the first 2020 pandemic wave. METHODS: Retrospective, multicentre, national cohort study conducted between February 24 and June 14, 2020, in 24 Italian Intensive Care Units (ICU) on adult patients needing invasive mechanical ventilation for respiratory failure caused by COVID-19. Clinical data were collected on the day of ICU admission. Information regarding the use of prone position was collected daily. Follow-up for patient outcomes was performed on July 15, 2020. The respiratory effects of the first prone position were studied in a subset of 78 patients. Patients were classified as Oxygen Responders if the PaO2/FiO2 ratio increased ≥ 20 mmHg during prone position and as Carbon Dioxide Responders if the ventilatory ratio was reduced during prone position. RESULTS: Of 1057 included patients, mild, moderate and severe ARDS was present in 15, 50 and 35% of patients, respectively, and had a resulting mortality of 25, 33 and 41%. Prone position was applied in 61% of the patients. Patients placed prone had a more severe disease and died significantly more (45% vs. 33%, p < 0.001). Overall, prone position induced a significant increase in PaO2/FiO2 ratio, while no change in respiratory system compliance or ventilatory ratio was observed. Seventy-eight % of the subset of 78 patients were Oxygen Responders. Non-Responders had a more severe respiratory failure and died more often in the ICU (65% vs. 38%, p = 0.047). Forty-seven % of patients were defined as Carbon Dioxide Responders. These patients were older and had more comorbidities; however, no difference in terms of ICU mortality was observed (51% vs. 37%, p = 0.189 for Carbon Dioxide Responders and Non-Responders, respectively). CONCLUSIONS: During the COVID-19 pandemic, prone position has been widely adopted to treat mechanically ventilated patients with respiratory failure. The majority of patients improved their oxygenation during prone position, most likely due to a better ventilation perfusion matching. TRIAL REGISTRATION: clinicaltrials.gov number: NCT04388670.


Subject(s)
COVID-19/therapy , Critical Care/standards , Intubation/standards , Patient Positioning/standards , Prone Position , Respiration, Artificial/standards , Supine Position , Aged , Cohort Studies , Female , Humans , Italy , Male , Middle Aged , Practice Guidelines as Topic , Retrospective Studies
17.
J Thromb Thrombolysis ; 52(3): 772-778, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33844150

ABSTRACT

It is still debated whether prophylactic doses of low-molecular- weight heparin (LMWH) are always effective in preventing Venous Thromboembolism (VTE) and mortality in COVID-19. Furthermore, there is paucity of data for those patients not requiring ventilation. We explored mortality and the safety/efficacy profile of LMWH in a cohort of Italian patients with COVID-19 who did not undergo ventilation. From the initial cohort of 422 patients, 264 were enrolled. Most (n = 156, 87.7%) received standard LMWH prophylaxis during hospitalization, with no significant difference between medical wards and Intensive Care Unit (ICU). Major or not major but clinically relevant hemorrhages were recorded in 13 (4.9%) patients: twelve in those taking prophylactic LMWH and one in a patient taking oral anticoagulants (p: n.s.). Thirty-nine patients (14.8%) with median age 75 years. were transfused. Hemoglobin (Hb) at admission was significantly lower in transfused patients and Hb at admission inversely correlated with the number of red blood cells units transfused (p < 0.001). In-hospital mortality occurred in 76 (28.8%) patients, 46 (24.3%) of whom admitted to medical wards. Furthermore, Hb levels at admittance were significantly lower in fatalities (g/dl 12.3; IQR 2.4 vs. 13.3; IQR 2.8; Mann-Whitney U-test; p = 0.001). After the exclusion of patients treated by LMWH intermediate or therapeutic doses (n = 32), the logistic regression showed that prophylaxis significantly and independently reduced mortality (OR 0.31, 95% CI 0.13-0.85). Present data show that COVID-19 patients who do not require ventilation benefit from prophylactic doses of LMWH.


Subject(s)
Anticoagulants/therapeutic use , Blood Transfusion , COVID-19/therapy , Heparin, Low-Molecular-Weight/therapeutic use , Thromboembolism/prevention & control , Aged , Aged, 80 and over , Anticoagulants/adverse effects , Blood Transfusion/mortality , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , Clinical Decision-Making , Female , Heparin, Low-Molecular-Weight/adverse effects , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Protective Factors , Risk Assessment , Risk Factors , Thromboembolism/blood , Thromboembolism/diagnosis , Thromboembolism/mortality , Time Factors , Treatment Outcome
18.
BMC Anesthesiol ; 21(1): 9, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33419396

ABSTRACT

BACKGROUND: Pneumonia induced by 2019 Coronavirus (COVID-19) is characterized by hypoxemic respiratory failure that may present with a broad spectrum of clinical phenotypes. At the beginning, patients may have normal lung compliance and be responsive to noninvasive ventilatory support, such as CPAP. However, the transition to more severe respiratory failure - Severe Acute Respiratory Syndrome (SARS-CoV-2), necessitating invasive ventilation is often abrupt and characterized by a severe V/Q mismatch that require cycles of prone positioning. The aim of this case is to report the effect on gas exchange, respiratory mechanics and hemodynamics of tripod (or orthopneic sitting position) used as an alternative to prone position in a patient with mild SARS-CoV-2 pneumonia ventilated with helmet CPAP. CASE PRESENTATION: A 77-year-old awake and collaborating male patient with mild SARS-CoV-2 pneumonia and ventilated with Helmet CPAP, showed sudden worsening of gas exchange without dyspnea. After an unsuccessful attempt of prone positioning, we alternated three-hours cycles of semi-recumbent and tripod position, still keeping him in CPAP. Arterial blood gases (PaO2/FiO2, PaO2, SaO2, PaCO2 and A/a gradient), respiratory (VE, VT, RR) and hemodynamic parameters (HR, MAP) were collected in the supine and tripod position. Cycles of tripod position were continued for 3 days. The patient had a clinically important improvement in arterial blood gases and respiratory parameters, with stable hemodynamic and was successfully weaned and discharged to ward 10 days after pneumonia onset. CONCLUSIONS: Tripod position during Helmet CPAP can be applied safely in patients with mild SARS-CoV-2 pneumonia, with improvement of oxygenation and V/Q matching, thus reducing the need for intubation.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/therapy , Continuous Positive Airway Pressure/methods , Patient Positioning/methods , Respiratory Mechanics/physiology , SARS-CoV-2 , Aged , COVID-19/physiopathology , Humans , Male , Treatment Outcome
19.
J Clin Med ; 10(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440831

ABSTRACT

There is paucity of data on the transfusion need and its impact on the overall mortality in patients with COVID-19. We explored mortality in hospitalized patients with COVID-19 who required transfusions. Information on clinical variables and in-hospital mortality were obtained from medical records of 422 patients admitted to medical wards or the Intensive Care Unit (ICU). In-hospital mortality occurred in 147 (34.8%) patients, 94 (63.9%) of whom were admitted to the ICU. The median fatalities age was 77 years (IQR 14). Overall, 100 patients (60 males) received transfusion during hospitalization. The overall mortality was significantly and independently associated with age, ICU admission, Chronic Kidney Disease (CKD), and the number of transfused Red Blood Cell (RBC) units. Specifically, CKD was associated with mortality in patients admitted to medical wards, whereas the number of transfused RBC units predicted mortality in those admitted to the ICU. Transfusion strongly interacted with the admission to ICU (OR: 9.9; 95% CI: 2.5-40.0). In patients with COVID-19, age is one of the strongest risk factors in predicting mortality independently of the disease's severity. CKD confers a higher risk of mortality in patients admitted to medical wards. In those admitted to the ICU, the more RBC units are transfused, the more mortality increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...