Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Med Res Rev ; 42(1): 426-440, 2022 01.
Article in English | MEDLINE | ID: mdl-34309893

ABSTRACT

Radiomics is the quantitative analysis of standard-of-care medical imaging; the information obtained can be applied within clinical decision support systems to create diagnostic, prognostic, and/or predictive models. Radiomics analysis can be performed by extracting hand-crafted radiomics features or via deep learning algorithms. Radiomics has evolved tremendously in the last decade, becoming a bridge between imaging and precision medicine. Radiomics exploits sophisticated image analysis tools coupled with statistical elaboration to extract the wealth of information hidden inside medical images, such as computed tomography (CT), magnetic resonance (MR), and/or Positron emission tomography (PET) scans, routinely performed in the everyday clinical practice. Many efforts have been devoted in recent years to the standardization and validation of radiomics approaches, to demonstrate their usefulness and robustness beyond any reasonable doubts. However, the booming of publications and commercial applications of radiomics approaches warrant caution and proper understanding of all the factors involved to avoid "scientific pollution" and overly enthusiastic claims by researchers and clinicians alike. For these reasons the present review aims to be a guidebook of sorts, describing the process of radiomics, its pitfalls, challenges, and opportunities, along with its ability to improve clinical decision-making, from oncology and respiratory medicine to pharmacological and genotyping studies.


Subject(s)
Image Processing, Computer-Assisted , Precision Medicine , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Medical Oncology , Positron-Emission Tomography
2.
Sci Rep ; 11(1): 2885, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536451

ABSTRACT

Segmentation of anatomical structures is valuable in a variety of tasks, including 3D visualization, surgical planning, and quantitative image analysis. Manual segmentation is time-consuming and deals with intra and inter-observer variability. To develop a deep-learning approach for the fully automated segmentation of the inner ear in MRI, a 3D U-net was trained on 944 MRI scans with manually segmented inner ears as reference standard. The model was validated on an independent, multicentric dataset consisting of 177 MRI scans from three different centers. The model was also evaluated on a clinical validation set containing eight MRI scans with severe changes in the morphology of the labyrinth. The 3D U-net model showed precise Dice Similarity Coefficient scores (mean DSC-0.8790) with a high True Positive Rate (91.5%) and low False Discovery Rate and False Negative Rates (14.8% and 8.49% respectively) across images from three different centers. The model proved to perform well with a DSC of 0.8768 on the clinical validation dataset. The proposed auto-segmentation model is equivalent to human readers and is a reliable, consistent, and efficient method for inner ear segmentation, which can be used in a variety of clinical applications such as surgical planning and quantitative image analysis.


Subject(s)
Deep Learning , Ear, Inner/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Adult , Aged , Datasets as Topic , Ear, Inner/anatomy & histology , Feasibility Studies , Female , Humans , Male , Middle Aged
3.
JCO Clin Cancer Inform ; 4: 184-200, 2020 03.
Article in English | MEDLINE | ID: mdl-32134684

ABSTRACT

Big data for health care is one of the potential solutions to deal with the numerous challenges of health care, such as rising cost, aging population, precision medicine, universal health coverage, and the increase of noncommunicable diseases. However, data centralization for big data raises privacy and regulatory concerns.Covered topics include (1) an introduction to privacy of patient data and distributed learning as a potential solution to preserving these data, a description of the legal context for patient data research, and a definition of machine/deep learning concepts; (2) a presentation of the adopted review protocol; (3) a presentation of the search results; and (4) a discussion of the findings, limitations of the review, and future perspectives.Distributed learning from federated databases makes data centralization unnecessary. Distributed algorithms iteratively analyze separate databases, essentially sharing research questions and answers between databases instead of sharing the data. In other words, one can learn from separate and isolated datasets without patient data ever leaving the individual clinical institutes.Distributed learning promises great potential to facilitate big data for medical application, in particular for international consortiums. Our purpose is to review the major implementations of distributed learning in health care.


Subject(s)
Algorithms , Data Management/standards , Data Mining/ethics , Delivery of Health Care/ethics , Electronic Health Records/ethics , Machine Learning , Privacy , Data Mining/methods , Databases, Factual/statistics & numerical data , Delivery of Health Care/methods , Humans , Precision Medicine/methods
4.
Am J Hum Genet ; 106(3): 389-404, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109421

ABSTRACT

Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1, PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.


Subject(s)
Genome-Wide Association Study , Leukocytes/ultrastructure , Nucleotides/metabolism , Telomere , Humans
5.
Diagnostics (Basel) ; 11(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396587

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has reached pandemic status. Drastic measures of social distancing are enforced in society and healthcare systems are being pushed to and beyond their limits. To help in the fight against this threat on human health, a fully automated AI framework was developed to extract radiomics features from volumetric chest computed tomography (CT) exams. The detection model was developed on a dataset of 1381 patients (181 COVID-19 patients plus 1200 non COVID control patients). A second, independent dataset of 197 RT-PCR confirmed COVID-19 patients and 500 control patients was used to assess the performance of the model. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). The model had an AUC of 0.882 (95% CI: 0.851-0.913) in the independent test dataset (641 patients). The optimal decision threshold, considering the cost of false negatives twice as high as the cost of false positives, resulted in an accuracy of 85.18%, a sensitivity of 69.52%, a specificity of 91.63%, a negative predictive value (NPV) of 94.46% and a positive predictive value (PPV) of 59.44%. Benchmarked against RT-PCR confirmed cases of COVID-19, our AI framework can accurately differentiate COVID-19 from routine clinical conditions in a fully automated fashion. Thus, providing rapid accurate diagnosis in patients suspected of COVID-19 infection, facilitating the timely implementation of isolation procedures and early intervention.

6.
Nat Genet ; 47(6): 589-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961943

ABSTRACT

Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.


Subject(s)
Lipid Metabolism/genetics , Dyslipidemias/genetics , Gene Frequency , Genetic Loci , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Mutation, Missense , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...