Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
EXCLI J ; 23: 727-762, 2024.
Article in English | MEDLINE | ID: mdl-38983783

ABSTRACT

Dermatofibrosarcoma Protuberans (DFSP) is a rare soft tissue sarcoma distinguished by its infiltrative growth pattern and recurrence potential. Understanding the molecular characteristics of DFSP is essential for enhancing its diagnosis, prognosis, and treatment strategies. The paper provides an overview of DFSP, highlighting the significance of its molecular understanding. The gene expression profiling has uncovered unique molecular signatures in DFSP, highlighting its heterogeneity and potential therapeutic targets. The Platelet-Derived Growth Factor Receptors (PDGFRs) and Fibroblast Growth Factor Receptors (FGFRs) signaling pathways play essential roles in the progression and development of DFSP. The abnormal activation of these pathways presents opportunities for therapeutic interventions. Several emerging therapies, i.e., immunotherapies, immunomodulatory strategies, and immune checkpoint inhibitors, offer promising alternatives to surgical resection. In DFSP management, combination strategies, including rational combination therapies, aim to exploit the synergistic effects and overcome resistance. The article consisting future perspectives and challenges includes the discovery of prognostic and predictive biomarkers to improve risk stratification and treatment selection. Preclinical models, such as Patient-derived xenografts (PDX) and genetically engineered mouse models, help study the biology of DFSP and evaluate therapeutic interventions. The manuscript also covers small-molecule inhibitors, clinical trials, immune checkpoint inhibitors for DFSP treatment, combination therapies, rational therapies, and resistance mechanisms, which are unique and not broadly covered in recent pieces of literature. See also the graphical abstract(Fig. 1).

2.
EXCLI J ; 23: 300-334, 2024.
Article in English | MEDLINE | ID: mdl-38655092

ABSTRACT

Cutaneous Squamous Cell Carcinoma (cSCC) is a common and potentially fatal type of skin cancer that poses a significant threat to public health and has a high prevalence rate. Exposure to ultraviolet radiation on the skin surface increases the risk of cSCC, especially in those with genetic syndromes like xerodermapigmentosum and epidermolysis bullosa. Therefore, understanding the molecular pathogenesis of cSCC is critical for developing personalized treatment approaches that are effective in cSCC. This article provides a comprehensive overview of current knowledge of cSCC pathogenesis, emphasizing dysregulated signaling pathways and the significance of molecular profiling. Several limitations and challenges associated with conventional therapies, however, are identified, stressing the need for novel therapeutic strategies. The article further discusses molecular targets and therapeutic approaches, i.e., epidermal growth factor receptor inhibitors, hedgehog pathway inhibitors, and PI3K/AKT/mTOR pathway inhibitors, as well as emerging molecular targets and therapeutic agents. The manuscript explores resistance mechanisms to molecularly targeted therapies and proposes methods to overcome them, including combination strategies, rational design, and optimization. The clinical implications and patient outcomes of molecular-targeted treatments are assessed, including response rates and survival outcomes. The management of adverse events and toxicities in molecular-targeted therapies is crucial and requires careful monitoring and control. The paper further discusses future directions for therapeutic advancement and research in this area, as well as the difficulties and constraints associated with conventional therapies.

3.
PeerJ ; 12: e16746, 2024.
Article in English | MEDLINE | ID: mdl-38562998

ABSTRACT

Identifying suitable habitats and conserving corridors are crucial to the long-term conservation of large and conflict-prone animals. Being a flagship species, survival of Asian elephants is threatened by human-induced mortality and habitat modification. We aimed to assess the habitat suitability and connectivity of the Asian elephant Elephas maximus Linnaeus, 1758 habitat in the state of Odisha in eastern India. We followed the ensemble of spatial prediction models using species presence data and five environmental variables. We used least-cost path and circuit theory approaches to identify the spatial connectivity between core habitats for Asian elephants. The results revealed that normalized difference vegetation index (NDVI; variable importance 42%) and terrain ruggedness (19%) are the most influential variables for predicting habitat suitability of species within the study area. Our habitat suitability map estimated 14.6% of Odisha's geographical area (c. 22,442 km2) as highly suitable and 13.3% (c. 20,464 km2) as moderate highly suitable. We identified 58 potential linkages to maintain the habitat connectivity across study area. Furthermore, we identified pinch points, bottlenecks, and high centrality links between core habitats. Our study offers management implications for long-term landscape conservation for Asian elephants in Odisha and highlights priority zones that can help maintain spatial links between elephant habitats.


Subject(s)
Elephants , Animals , Humans , Ecosystem , Environment , India
4.
Cell Death Dis ; 14(11): 753, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980415

ABSTRACT

Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Ovarian Neoplasms , Humans , Female , Mice , Animals , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Genetic Testing , Ovarian Neoplasms/genetics , Homozygote , Breast Neoplasms/genetics , BRCA1 Protein/genetics , Genetic Predisposition to Disease
5.
PLoS Genet ; 19(9): e1010940, 2023 09.
Article in English | MEDLINE | ID: mdl-37713444

ABSTRACT

The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.


Subject(s)
Breast Neoplasms , Gene Editing , Animals , Humans , Mice , Female , Virulence , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Exons/genetics , Codon , Nucleotides , Breast Neoplasms/genetics , Genetic Predisposition to Disease , BRCA1 Protein/genetics
6.
Indian J Psychiatry ; 65(5): 541-549, 2023 May.
Article in English | MEDLINE | ID: mdl-37397848

ABSTRACT

Background: Though the concept of burnout has been around for long, its significance is increasing nowadays owing to the demanding nature of jobs. The latest ICD-11 also provides a detailed description of Burnout syndrome. Physicians are at high risk for experiencing burnout and this becomes especially relevant in the ongoing COVID-19 pandemic. Aim: To determine the risk of burnout among medical faculty and its predictors, if any. Materials and Methods: This was a multicentric cross-sectional study that included medical faculty from four tertiary care government teaching hospitals in north India. A survey was conducted during the current COVID-19 pandemic to assess burnout using a structured online questionnaire based on Burnout Assessment Tool. The questionnaire also included relevant socio-demographic, professional, health, and lifestyle-related details. Descriptive statistics, Mann-Whitney U Test/Kruskal Wallis Test, and Kendall's tau-b Test were used for statistical analysis. Results: A total of 244 medical faculty completed the survey. 27.87% were at risk of burnout, out of which 11.89% were at a very high risk of burnout. Dissatisfaction with the job and dissatisfaction with sleep (P < 0.01 for both) were associated with greater burnout scores and a greater risk of burnout. Conclusion: Faculty members are at high risk of burnout, regardless of sociodemographic and work-related factors.

7.
Curr Microbiol ; 80(8): 265, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393301

ABSTRACT

Sulfur is an important key nutrient required for the growth and development of cyanobacteria. Several reports showed the effect of sulfate limitation in unicellular and filamentous cyanobacteria, but such studies have not yet been reported in heterocytous cyanobacteria to ascribe the mechanisms of nitrogen and thiol metabolisms. Thus, the present work was carried out to appraise the impacts of sulfate limitation on nitrogen and thiol metabolisms in Anabaena sp. PCC 7120 by analyzing the contents as well as enzymes of nitrogen and thiol metabolisms. Cells of Anabaena sp. PCC 7120 were exposed to different regimes of sulfate, i.e., 300, 30, 3, and 0 µM. Application of reduced concentration of sulfate showed negative impact on the cyanobacterium. Sulfate-limiting conditions reduces nitrogen-containing compounds in the cells of Anabaena. Additionally, reduced activities of nitrogen metabolic enzymes represented the role of sulfate in nitrogen metabolism. However, decreased activities of thiol metabolic enzymes indicated that sulfate-limited cyanobacterial cells have lower amount of glutathione and total thiol contents. Reduced accumulation of thiol components in the stressed cells indicated that sulfate-limited cells have lower ability to withstand stressful condition. Hence, Anabaena displays differential response to different concentrations of sulfate, and thus, stipulated that sulfur plays an important role in nitrogen and thiol metabolisms. To the best of our knowledge, this is the first report demonstrating the impact of sulfate stress on nitrogen and redox metabolisms in heterocytous cyanobacteria. This preliminary study provides a baseline idea that may help improve the production of paddy.


Subject(s)
Anabaena , Cyanobacteria , Nitrogen , Sulfates , Oxidation-Reduction , Sulfhydryl Compounds , Sulfur
8.
Crit Rev Anal Chem ; : 1-15, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37184105

ABSTRACT

In the present review article, different advanced liquid chromatographic techniques and the advanced techniques other than liquid chromatography that are used to estimate the pesticide residues from different plant-based samples are presented. In the beginning of the article, details of pesticides, their health effects and various cell lines used for the related study has been outlined. Afterward, detailed descriptions regarding pesticides classification are inscribed. In the end, recent advancements in the area of analysis of pesticides for herbal drugs are explained. Solid phase micro extraction (SPME) and solid-phase extraction (SPE) are considered as most common method of sample preparation for pesticides and its residual analysis. The most commonly used analytical separation technique for pesticide analysis is liquid chromatography (LC) integrated with mass spectrometry (MS) and MS/MS as Triple Quadrupole Mass Spectrometer (QqQ) for the samples analysis where high level of sensitivity and accuracy is required in quantification.

9.
J Environ Health Sci Eng ; 21(1): 225-237, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37159738

ABSTRACT

Microplastics (MPs) research still at the budding stage in Estonia. A theoretical model build on substance flow analysis principles was developed. The goal of this study is to broaden understanding of MPs-types in wastewater and their contribution from known sources, quantify their presence based on model prediction and in-situ measurements. The authors estimate MPs from laundry wash (LW) and personal care products (PCPs)) in wastewater in Estonia. We found out that total estimated MPs load per capita from PCPs and LW in Estonia were between 4.25 - 12 tons/year, 3.52 - 11.24 tons / year respectively, and estimated load ended up in wastewater were between 700 - 30,000 kg/yr. and 2 - 1500 kg/yr. in WWTPs influent and effluent stream respectively. Finally. We conducted a comparison between estimated MPs load and on-site sample analysis and observed a medium-high level of MPs being discharged into the environment annually. During quantification and chemical characterization using µFTIR analysis, we found that microfibers with a length of 0.2-0.6 mm accounted for over 75% of the total MPs load in the effluent samples collected from four coastal WWTPs in Estonia. The estimation avails us broader overview about the theoretical MPs load in wastewater and gain valuable insight into developing process methods that prevent MPs accumulation in sewage sludge for safe application in agriculture.

10.
Environ Sci Pollut Res Int ; 30(18): 53424-53444, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36856995

ABSTRACT

The present work performs the polyphasic characterization of a novel cyanobacterial species Scytonema ambikapurensis isolated from an Indian hot spring and evaluates its wastewater bioremediation potential. While the physicochemical analyses of the wastewater indicated high load of nutrients and metals, the wastewater bioremediation experiment performed using the test cyanobacterium denoted the removal of 70 and 86% phosphate, 49 and 66% sulfate, 96 and 98% nitrate, 91 and 92% nitrite, 95 and 96% ammonia, 66 and 72% chloride, 79 and 81% zinc, 68 and 80% nickel, 81 and 90% calcium, and 80 and 90% potassium from the autoclaved and un-autoclaved wastewater, respectively, after 20 days of culturing. The kinetics study of zinc and nickel removal from wastewater revealed that the cyanobacterium employed sequential biosorption (by following pseudo-second-order kinetics model) and bioaccumulation methods to remove these two metals. The quality of the autoclaved and un-autoclaved wastewater was further improved by the cyanobacterium through reduction of hardness by 74 and 81%, respectively. In wastewater, the cyanobacterium not only enhanced its biomass, chlorophyll and carbohydrate contents, but also produced small amount of released and high capsular exopolysaccharide (EPS). The FTIR and TGA analyses of capsular EPS unraveled that it was a negatively charged sulfated biomolecule having thermostability up to 240 °C, which suggested its possible use as excellent emulsifying, viscosifying, and biosorption agent. The credibility of this EPS as biosorption agent was ascertained by evaluating its metal chelating ability. Finally, the experimental data denoting the ability of S. ambikapurensis to bioremediate wastewater and simultaneously produce EPS was statistically validated by PCA1-pollutant removal model and the PCA2-cellular constituent model, respectively. Briefly, the study discloses that the cyanobacterium has huge biotechnological and industrial importance as it bioremediates wastewater and simultaneously produces thermostable exopolysaccharide.


Subject(s)
Cyanobacteria , Hot Springs , Water Purification , Wastewater , Nickel , Biomass , Zinc , Biodegradation, Environmental , Adsorption , Kinetics
11.
Curr Drug Discov Technol ; 20(3): e210223213867, 2023.
Article in English | MEDLINE | ID: mdl-36824006

ABSTRACT

INTRODUCTION: The root bark of Berberis aristata has been utilized by indigenous peoples for wound treatment for centuries. The mature root barks are crushed into a paste and applied to the wound's surface. OBJECTIVE: The focus of this research is to analyse the wound healing activities of an ethanolic extract of Berberis aristata, as well as to use molecular docking to establish the likely mechanism of the potent phytochemical. There is no scientific evidence to support the usage of root bark extract of Berberis aristata. METHODS: The Herbal ointment, which comprises (1%, 2%, and 4% w/w) ethanolic extract of root bark, was developed to test the wound healing ability of incision and excision wounds, and the molecular mechanism was established using Auto-Dock software. RESULTS: Epithelization stage, wound index, % wound contraction area, hydroxyproline content, DNA estimate, and histopathological assessments were performed on the incision wound model. Tensile strength was assessed in an excision wound model. TLC was used to identify the samples after successive extractions with different solvents based on polarity. CONCLUSION: Berberine and tetrahydropalmatine were major active phytoconstituent found in root barks of Berberis aristata as secondary metabolites. Animals treated with 4% w/w formulation demonstrated considerable wound contraction, epithelization time, and wound index in the excision model. In contrast, to control and standardize the concentrations of hydroxyproline, total amino acids, and DNA in recovering tissue were higher. At 4% w/w extract formulation, the parameters studied indicated a substantial result. Berberine and tetrahydropalmatine, active metabolites which are present in the ethanolic extract of Berberis aristata, were found to be responsible for wound healing. Based on ligand interactions, the findings verified Berberis aristata ethnomedicinal claim in a wound healing capacity.


Subject(s)
Berberine , Berberis , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Molecular Docking Simulation , Berberis/chemistry , Berberine/analysis , Plant Bark/chemistry , Hydroxyproline/analysis , Wound Healing , Ethanol , DNA/analysis
12.
Res Microbiol ; 174(4): 104027, 2023 May.
Article in English | MEDLINE | ID: mdl-36646262

ABSTRACT

A moderately thermophilic, gram-positive genomospecies Anoxybacillus rupiensis TPH1 was isolated from Tatapani hot spring, Chhattisgarh, India. Genome of 3.70 Mb with 42.3% GC subsumed 4131 CDSs, 65 tRNA, 5 rRNA, 35 AMR and 19 drug target genes. Further, comparative genomics of 19 Anoxybacillus spp. exhibited an open pan genome of 13102 genes along with core (10.62%), unique (43.5%) and accessory (45.9%) genes. Moreover, phylogenomic tree displayed clustering of Anoxybacillus spp. into two distinct clades where clade A species harbored larger genomes, more unique genes, CDS and hypothetical proteins than clade B species. Further, distribution of azoreductases showed FMN-binding NADPH azoreductase (AzoRed1) presence in clade A species only and FMN-binding NADH azoreductase (AzoRed2) harboring by species of both clades. Heavy metal resistance genes distribution showed omnipresence of znuA, copZ and arsC in both clades, dispersed presence of cbiM, czcD, merA and feoB over both clades and harboring of nikA and acr3 by few species of clade A only. Additionally, molecular docking of AzoRed1, AzoRed2, ZnuA, CopZ, Acr3, CbiM, CzcD, MerA and NikA with their respective ligands indicated high affinity and stable binding. Conclusively, present study provided insight into gene repertoire of genus Anoxybacillus and a basis for the potential application of this thermophile in bioremediation of azo dyes and heavy metals.


Subject(s)
Anoxybacillus , Hot Springs , Metals, Heavy , Anoxybacillus/genetics , Biodegradation, Environmental , Azo Compounds/metabolism , Molecular Docking Simulation , Metals, Heavy/metabolism , Phylogeny
13.
Environ Sci Pollut Res Int ; 30(4): 9591-9608, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36057058

ABSTRACT

Cyanobacteria adopt a variety of changes at proteomic and metabolic levels for surviving under harmful environmental conditions including heavy metal stress. The current study investigates the impact of zinc stress on the proteome of Anabaena sphaerica to get an insight into its molecular mechanisms of zinc tolerance. The study revealed three different aspects that were associated with the zinc tolerance in A. sphaerica: (i) the reduced expression of photosynthesis, nitrogen fixation, energy metabolism, respiratory, and transcriptional/translational proteins probably to conserve energy and utilizing it to sustain growth; (ii) the enhanced expression of metallothionein and ferritin domain protein All 3940 to chelate free zinc ions whereas upregulation of antioxidative proteins for detoxifying reactive oxygen species; and (iii) the expression of large numbers of hypothetical proteins to maintain the important cellular functions. Furthermore, over expressions of sulfate adenylyl transferase and cystathionine beta synthase along with the increased synthesis of peptidases and thiolated antioxidant proteins were also noticed which denoted cysteine synthesis under sulfur deprivation possibly by mobilizing the sulfur from dead cells and its channelization towards the production of thiolated antioxidants. Besides tolerating excess amount of zinc, A. sphaerica exhibited high zinc biosorption efficiency which confirmed its outstanding zinc bioremediation potential.


Subject(s)
Anabaena , Zinc , Zinc/metabolism , Biodegradation, Environmental , Proteomics , Anabaena/metabolism , Proteins/metabolism , Antioxidants/metabolism , Sulfur/metabolism , Bacterial Proteins/metabolism
14.
Planta ; 256(2): 37, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35819629

ABSTRACT

MAIN CONCLUSION: Plant responds to Agrobacterium via three-layered immunity that determines its susceptibility or resistance to Agrobacterium infection. Agrobacterium tumefaciens is a soil-borne Gram-negative bacterium that causes crown gall disease in plants. The remarkable feat of interkingdom gene transfer has been extensively utilised in plant biotechnology to transform plant as well as non-host systems. In the past two decades, the molecular mode of the pathogenesis of A. tumefaciens has been extensively studied. Agrobacterium has also been utilised as a premier model to understand the defence response of plants during plant-Agrobacterium interaction. Nonetheless, the threat of Agrobacterium-mediated crown gall disease persists and is associated with a huge loss of plant vigour in agriculture. Understanding the molecular dialogues between these two interkingdom species might provide a cure for crown gall disease. Plants respond to A. tumefaciens by mounting a three-layered immune response, which is manipulated by Agrobacterium via its virulence effector proteins. Comparative studies on plant defence proteins versus the counter-defence of Agrobacterium have shed light on plant susceptibility and tolerance. It is possible to manipulate a plant's immune system to overcome the crown gall disease and increase its competence via A. tumefaciens-mediated transformation. This review summarises the recent advances in the molecular mode of Agrobacterium pathogenesis as well as the three-layered immune response of plants against Agrobacterium infection.


Subject(s)
Agrobacterium tumefaciens , Plants , Agrobacterium tumefaciens/genetics , Plant Tumors/genetics , Plant Tumors/microbiology , Plants/genetics , Virulence
15.
Nat Commun ; 13(1): 1751, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365640

ABSTRACT

The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB.


Subject(s)
DNA Breaks, Double-Stranded , Rad51 Recombinase , Animals , DNA , DNA Repair/genetics , Homologous Recombination , Mice , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
16.
Plant Cell Rep ; 41(4): 873-891, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35067774

ABSTRACT

KEY MESSAGE: OsGSTU5 interacts and glutathionylates the VirE2 protein of Agrobacterium and its (OsGSTU5) overexpression and downregulation showed a low and high AMT efficiency in rice, respectively. During Agrobacterium-mediated transformation (AMT), T-DNA along with several virulence proteins such as VirD2, VirE2, VirE3, VirD5, and VirF enter the plant cytoplasm. VirE2 serves as a single-stranded DNA binding (SSB) protein that assists the cytoplasmic trafficking of T-DNA inside the host cell. Though the regulatory roles of VirE2 have been established, the cellular reaction of their host, especially in monocots, has not been characterized in detail. This study identified a cellular interactor of VirE2 from the cDNA library of rice. The identified plant protein encoded by the gene cloned from rice was designated OsGSTU5, it interacted specifically with VirE2 in the host cytoplasm. OsGSTU5 was upregulated during Agrobacterium infection and involved in the post-translational glutathionylation of VirE2 (gVirE2). Interestingly, the in silico analysis showed that the 'gVirE2 + ssDNA' complex was structurally less stable than the 'VirE2 + ssDNA' complex. The gel shift assay also confirmed the attenuated SSB property of gVirE2 over VirE2. Moreover, knock-down and overexpression of OsGSTU5 in rice showed increased and decreased T-DNA expression, respectively after Agrobacterium infection. The present finding establishes the role of OsGSTU5 as an important target for modulation of AMT efficiency in rice.


Subject(s)
Agrobacterium , Oryza , Agrobacterium/genetics , Agrobacterium/metabolism , Agrobacterium tumefaciens/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ion Channels/metabolism , Oryza/genetics , Oryza/metabolism
17.
Biol Trace Elem Res ; 200(8): 3594-3607, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34705190

ABSTRACT

Hepatocellular carcinoma is among the leading causes of cancer-related deaths worldwide and needs efficient and feasible approach of treatment. Present study focuses on exploring the anticancer activity of a secondary metabolite called siderophore of Aspergillus nidulans against hepatocellular carcinoma cell line HepG2. These small peptides are produced by microorganisms including fungi for scavenging iron from its surroundings. Fungi including Aspergillus spp. are known to produce siderophores under iron-limited conditions. Siderophores have high affinity towards iron and are classified into various types. In the present study, siderophore isolated and purified from fungal cultures was confirmed to be of hydroxamate type by chrome azurol sulfonate and Atkin's assay. HPLC analysis confirmed purity while LC-ESI-MS revealed that the siderophore is triacetyl fusigen. Cancerous cells, HepG2, grown under siderophore treatment showed inhibition in growth and proliferation in a dose- and time-dependent manner. Reduction in viability and metabolic activity was evident upon treatment as seen in trypan blue, MTT and WST assay. Fluorescent staining using PI and DAPI confirmed the same while DCFDA staining revealed increased reactive oxygen species production which might have led to cell death and deterioration. Such increase in ROS has been correlated with iron accumulation by assessing intracellular iron level through ICP-MS. To assess the effect of siderophore treatment on normal cells, WRL-68, same assays were carried out but the effect was mostly non-significant up to 48 h. Thus, present work suggests that an optimum dose of siderophore purified from A. nidulans culture might prove a useful anticancer agent.


Subject(s)
Aspergillus nidulans , Carcinoma, Hepatocellular , Liver Neoplasms , Aspergillus nidulans/metabolism , Carcinoma, Hepatocellular/drug therapy , Cell Line , Humans , Iron/metabolism , Iron/pharmacology , Liver Neoplasms/drug therapy , Siderophores/pharmacology
18.
J Hazard Mater ; 426: 128100, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34954436

ABSTRACT

Arsenic (As) considered as one of the hazardous metalloid that hampers various physiological activities in rice. To study the mechanism of As tolerance in rice, one differentially expressed tau class glutathione-S-transferase (OsGSTU5) has been selected and transgenic rice plants with knockdown (KD) and overexpressing (OE) OsGSTU5 were generated. Our results suggested that KD lines became less tolerant to As stress than WT plants, while OE lines showed enhanced tolerance to As. Under As toxicity, OE and KD lines showed enhanced and reduced antioxidant activities such as, SOD, PRX and catalase, respectively indicating its role in ROS homeostasis. In addition, higher malondialdehyde content, poor photosynthetic parameters and higher reactive oxygen species (ROS) in KD plant, suggests that knockdown of OsGSTU5 renders KD plants more susceptible to oxidative damage. Also, the relative expression profile of various transporters such as OsABCC1 (As sequestration), Lsi2 and Lsi6 (As translocaters) and GSH dependent activity of GSTU5 suggests that GSTU5 might help in chelation of As with GSH and sequester it into the root vacuole using OsABCC1 transporter and thus limits the upward translocation of As towards shoot. This study suggests the importance of GSTU5 as a good target to improve the As tolerance in rice.


Subject(s)
Arsenic , Oryza , Antioxidants , Arsenic/toxicity , Glutathione , Glutathione Transferase/genetics , Oryza/genetics , Plant Roots
19.
Cancer Res ; 81(24): 6080-6082, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911781

ABSTRACT

The coiled-coil domain of BRCA1 is essential for its interaction with partner and localizer of BRCA2 (PALB2). In mice, loss of this interaction is known to result in Fanconi anemia-associated phenotypes. In a study published in this issue of Cancer Research, Pulver and colleagues from the Jonkers lab have generated a mouse model with a leucine to proline change in codon 1363 in the coiled-coil domain of BRCA1 (Brca1LP ), which disrupts its binding with PALB2. Unlike the previously reported viable coiled-coil defective mice, homozygous Brca1LP/LP mutant mice die during embryogenesis. The authors examined the role of the BRCA1/PALB2 interaction on mammary tumorigenesis and reported increased incidence of mammary tumors that are carcinosarcomas or sarcomatoids, unlike the adenocarcinomas that are characteristic mammary tumor types associated with loss of Brca1 and Trp53 in mice. The findings reveal the relevance of the coiled-coil domain in mammary tumor suppression by BRCA1.See related article by Pulver et al., p. 6171.


Subject(s)
Neoplasms , Tumor Suppressor Proteins , Animals , BRCA1 Protein/genetics , Fanconi Anemia Complementation Group N Protein , Mice
20.
J Environ Sci Health B ; 56(11): 962-968, 2021.
Article in English | MEDLINE | ID: mdl-34693893

ABSTRACT

To test the tolerance and degradation potential of the cyanobacterium Fischerella sp. lmga1 for surfactant, sodium dodecyl sulfate (SDS), different doses of SDS (10, 30, 40, 50, 70 and 100 µM) were used for the growth. The lower doses of SDS supported the growth of cyanobacterium whereas the higher doses were found to be inhibitory but the cyanobacterium somehow managed its survival up to 100 µM SDS. However, a significant reduction was observed in the pigment and protein content. A substantial accumulation of carbohydrate at 70 µM SDS may act as an osmoprotectant for the survival of the cyanobacterium. The higher doses of SDS also triggered the ROS generation and lipid peroxidation which showed negative impact on the PSII efficiency. Simultaneously, an efficient ROS mitigation system (SOD and CAT activity) has also been worked up to 70 µM SDS while APX was enhanced only up to 50 µM SDS. Furthermore, the SDS degrading potential was investigated and almost 80% of the SDS was degraded after 6th days of treatment in the cyanobacterium. Hence, the results suggested that due to robust antioxidative defence system and ability to degrade the surfactant this cyanobacterium showed significant tolerance toward SDS.


Subject(s)
Antioxidants , Cyanobacteria , Sodium Dodecyl Sulfate , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...