Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
J Ayurveda Integr Med ; 15(4): 100949, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986268

ABSTRACT

BACKGROUND: Gout is a hyperuricemia (HUA)-related inflammatory reaction in the joints. Leech therapy has been effective in the gout, but the exact mechanism is unclear. OBJECTIVES: In this study, an exploration of the therapeutic mechanism of leech therapy in HUA and gouty arthritis (GA) rats was done. MATERIAL AND METHODS: HUA and GA construction utilizing sodium urate crystal, the potassium form of oxygen oxazine acid, and adenine. Serum and tissues were collected to measure uric acid (UA), creatinine (Cr), and urea nitrogen (UN). Enzyme linked immunosorbent assay was executed to evaluate the levels of xanthine oxidase (XOD), interleukin-6 (IL-6)and tumor necrosis factor α (TNF-α). The expression of glucose transporter 9 (GLUT9), organic anion transporter 3 (OAT3), adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) and the nuclear factor kappa B (NF-kB), interleukin-1ß (IL-1ß), Toll-like Receptor 2 (TLR2) were assessed by Western blot and visualized in immunohistochemistry staining. RESULTS: Leech therapy reduces the levels of UA, Cr, and UN as well as the liver and serum levels of XOD activity, increasing the expressions of GLUT9, ABCG2, and OAT3 in the kidney. Meanwhile, it reduces joint swelling and lowers the levels of TNF-α, IL-6, IL-1ß, TLR2, and NF-kB. CONCLUSIONS: Leech therapy regulates the metabolism of uric acid and treats gouty arthritis with an anti-inflammatory effect.

2.
Food Funct ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989726

ABSTRACT

Aloe polysaccharides (APs) display cognition-improving properties, but the underlying mechanisms remain unclear. Herein, AP supplementation for 24 weeks significantly improved cognitive behavioral disturbances caused by a high-fat diet. Moreover, APs notably reshaped the structure of the gut microbiota, which was manifested by increasing the relative abundance of Alloprevotella, Alistipes, Romboutsia, Turicibacter, Prevotellaceae_UCG-001, and Akkermansia while reducing the abundance of Parasutterella, Staphylococcus, Helicobacter, Enterococcus, and Erysipelatoclostridium. Notably, the gut barrier damage and LPS leakage caused by HF were recovered by APs. Additionally, with the improvement of intestinal barrier integrity, oxidative stress and inflammation in the brain and jejunum were significantly ameliorated. Furthermore, the expression of genes associated with cognitive impairment and the intestinal tract barrier was up-regulated (CREB, BDNF, TrkB, ZO-1 and occludin), while the expression of genes associated with inflammatory factors was down-regulated (IL-1ß, IL-6, and TNF-α). Finally, we observed a significant correlation among cognition-related genes, gut microbiota, oxidative stress, and inflammation in the HF-AP group. Together, our findings suggest that altered gut microbiota composition and improved gut barrier integrity may be important targets for potentially improving high-fat diet-induced cognitive impairment.

3.
Sports (Basel) ; 12(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921851

ABSTRACT

Post-activation performance enhancement (PAPE) can significantly improve athletic performance. This study investigated the effects of two different velocity loss (10% VL and 20% VL) protocols on PAPE in 20 m sprint performance among sprint athletes. Twenty-four male sprint athletes (100 m sprint time: 10.96 ± 0.15 s) participated in the study. A randomized crossover experimental design was used to compare the traditional group (TG) and 10% VL and 20% VL interventions. Sprint tests were conducted at 4, 8, 12, and 16 min post-intervention. A two-way repeated measures ANOVA revealed a significant interaction effect between group and time on 20 m sprint performance (F = 2.817, p = 0.037, partial η2 = 0.585). Simple main effects analysis revealed significant improvements at 4 min for the 20% VL group (p < 0.05). Cohen's d values indicated improvements in 10 m sprint times at 8 min for all groups (TG: effect size (ES) = -0.270, 10% VL: ES = -0.038, 20% VL: ES = -0.279). Improvements in 20 m sprint times were observed at 4 min for the 20% VL group (ES = -0.296) and at 16 min for the 10% VL group (ES = -0.276). In conclusion, the velocity loss-based PAPE protocol (20% VL) demonstrated a superior induction of PAPE effects in sprint athletes at 4 min compared to traditional 1RM-based PAPE protocols. However, no significant differences were observed between the two protocols at 8, 12, and 16 min.

4.
Ecol Evol ; 14(5): e11214, 2024 May.
Article in English | MEDLINE | ID: mdl-38725828

ABSTRACT

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

5.
Front Microbiol ; 15: 1354784, 2024.
Article in English | MEDLINE | ID: mdl-38770023

ABSTRACT

It is well-known that water quality has great significance on microbial community composition in aquatic environments. In this study, we detected water column indicates the microbial community composition of nine sampling sites over two seasons using Illumina TruSeq sequencing in Songtao Reservoir, Hainan Province, Southmost China. The study indicated that the dominant phylum was Actinobacteria, Proteobacteria, Bacteroidetes, and Cyanobacteria. The diversity parameters showed that the microbial community composition had significant spatiotemporal variations, including the significantly higher Shannon index and Simpson index upstream than those midstream and downstream. Besides, there were significantly higher Chao1 index, Shannon index, and Simpson index in winter than in summer. Principal coordinates analysis (PCoA) showed the microbial structural composition had significant seasonal differences. The results of microbial community composition further revealed that the eutrophication level upstream was higher than that of midstream and downstream. The redundancy analysis (RDA) diagram indicated that the abundance of microbiology species significantly correlated with temperature, total phosphorus, Se, and Ni. Furthermore, the mantel's test showed that the temperature and total phosphorus significantly affected the community composition of archaea and bacteria. Overall, our finding here partially validated our hypothesis that the spatiotemporal variations of microbial community composition are significantly related to nutrients, physicochemical factors and metals, which has been unknown previously in tropical drinking waterbodies. This study substantially contributed to understanding of the composition of microbial community in tropical drinking water reservoirs and the main environmental driving factors in tropical zones. It also provided a reference for the management of reservoir operation to ensure drinking water safe.

6.
Chemosphere ; 358: 142210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704041

ABSTRACT

Liquid crystal monomers (LCMs) are of emerging concern due to their ubiquitous presence in indoor and outdoor environments and their potential negative impacts on human health and ecosystems. Suspect screening approaches have been developed to monitor thousands of LCMs that could enter the environment, but an updated suspect list of LCMs is difficult to maintain given the rapid development of material innovations. To facilitate suspect screening for LCMs, in-silico mass fragmentation model and quantitative structure-activity relationship (QSPR) models were applied to predict electron ionization (EI) mass spectra of LCMs. The in-silico model showed limited predictive power for EI mass spectra, while the QSPR models trained with 437 published mass spectra of LCMs achieved an acceptable absolute error of 12 percentage points in predicting the relative intensity of the molecular ion, but failed to predict the mass-to-charge ratio of the base peak. A total of 41 characteristic structures were identified from an updated suspect list of 1606 LCMs. Multi-phenyl groups form the rigid cores of 85% of LCMs and produce 154 characteristic peaks in EI mass spectra. Monitoring the characteristic structures and fragments of LCMs may help identify new LCMs with the same rigid cores as those in the suspect list.


Subject(s)
Liquid Crystals , Quantitative Structure-Activity Relationship , Liquid Crystals/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Computer Simulation
7.
JOR Spine ; 7(1): e1319, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444947

ABSTRACT

Background: Intervertebral disc degeneration (IDD) and atherosclerosis are two common age-related conditions that can cause significant morbidity. While previous studies have suggested an association between the two conditions, the nature of this association remains unclear. Methods: We used Mendelian randomization (MR) to investigate the causal relationship between IDD and atherosclerosis. We identified genetic variants associated with IDD using summary statistics from a large genome-wide association study (GWAS). These variants were then used as instrumental variables to infer causal relationships with atherosclerosis in summary statistics from a separate GWAS. Results: Our MR analysis provided evidence for a causal relationship between IDD and atherosclerosis. We found that the genetic predisposition to atherosclerosis was associated with a higher risk of IDD (odds ratio [OR] = 3.55, 95% confidence interval [CI]: 1.07-11.74, p = 0.04). The IVW estimates were consistent with the observational findings and other robust MR methods. Sensitivity analyses suggested that our findings were robust to potential sources of bias. Conclusions: Our study provides evidence for a causal link between IDD and atherosclerosis, suggesting that interventions targeting atherosclerosis could have potential benefits for reducing the risk of IDD. Further research is needed to explore the underlying mechanisms that link these two conditions and to investigate potential therapeutic interventions.

8.
Sci Total Environ ; 926: 171771, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521260

ABSTRACT

Assessing the interactions between environmental pollutants and these mixtures is of paramount significance in understanding their negative effects on aquatic ecosystems. However, existing research often lacks comprehensive investigations into the physiological and biochemical mechanisms underlying these interactions. This study aimed to reveal the toxic mechanisms of cyproconazole (CYP), imazalil (IMA), and prochloraz (PRO) and corresponding these mixtures on Auxenochlorella pyrenoidosa by analyzing the interactions at physiological and biochemical levels. Higher concentrations of CYP, IMA, and PRO and these mixtures resulted in a reduction in chlorophyll (Chl) content and increased total protein (TP) suppression, and malondialdehyde (MDA) content exhibited a negative correlation with algal growth. The activity of catalase (CAT) and superoxide dismutase (SOD) decreased with increasing azole fungicides and their mixture concentrations, correlating positively with growth inhibition. Azole fungicides induced dose-dependent apoptosis in A. pyrenoidosa, with higher apoptosis rates indicative of greater pollutant toxicity. The results revealed concentration-dependent toxicity effects, with antagonistic interactions at low concentrations and synergistic effects at high concentrations within the CYP-IMA mixtures. These interactions were closely linked to the interactions observed in Chl-a, carotenoid (Car), CAT, and cellular apoptosis. The antagonistic effects of CYP-PRO mixtures on A. pyrenoidosa growth inhibition can be attributed to the antagonism observed in Chl-a, Chl-b, Car, TP, CAT, SOD, and cellular apoptosis. This study emphasized the importance of gaining a comprehensive understanding of the physiological and biochemical interactions within algal cells, which may help understand the potential mechanism of toxic interaction.


Subject(s)
Chlorophyta , Fungicides, Industrial , Water Pollutants, Chemical , Fungicides, Industrial/toxicity , Azoles/toxicity , Ecosystem , Chlorophyta/metabolism , Chlorophyll A , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
9.
Toxics ; 12(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535950

ABSTRACT

Ampicillin (AMP) and cefazolin (CZO) are commonly used ß-lactam antibiotics which are extensively globally produced. Additionally, AMP and CZO are known to have relatively high ecotoxicity. Notably, the mix of AMP and CZO creates a synergistic effect that is more harmful to the environment, and how exposure to AMP-CZO can induce synergism in algae remains virtually unknown. To yield comprehensive mechanistic insights into chemical toxicity, including dose-response relationships and variations in species sensitivity, the integration of multiple endpoints with de novo transcriptomics analyses were used in this study. We employed Selenastrum capricornutum to investigate its toxicological responses to AMP and CZO at various biological levels, with the aim of elucidating the underlying mechanisms. Our assessment of multiple endpoints revealed a significant growth inhibition in response to AMP at the relevant concentrations. This inhibition was associated with increased levels of reactive oxygen species (ROS) and perturbations in nitrogen metabolism, carbohydrate metabolism, and energy metabolism. Growth inhibition in the presence of CZO and the AMP-CZO combination was linked to reduced viability levels, elevated ROS production, decreased total soluble protein content, inhibited photosynthesis, and disruptions in the key signaling pathways related to starch and sucrose metabolism, ribosome function, amino acid biosynthesis, and the production of secondary metabolites. It was concluded from the physiological level that the synergistic effect of Chlorophyll a (Chla) and Superoxide dismutase (SOD) activity strengthened the growth inhibition of S. capricornutum in the AMP-CZO synergistic group. According to the results of transcriptomic analysis, the simultaneous down-regulation of LHCA4, LHCA1, LHCA5, and sodA destroyed the functions of the photosynthetic system and the antioxidant system, respectively. Such information is invaluable for environmental risk assessments. The results provided critical knowledge for a better understanding of the potential ecological impacts of these antibiotics on non-target organisms.

10.
Sci Total Environ ; 920: 170558, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38325459

ABSTRACT

The trees of the Dongzhai Harbor mangrove forest suffer from antibiotic contamination from surrounding aquaculture areas. Despite this being one of the largest mangrove forests in China, few studies have focused on the antibiotic pollution status in these aquaculture areas. In the present study, the occurrence, distribution, and risk assessment of 37 antibiotics in surface water and sediment samples from aquaculture areas around Dongzhai Harbor mangrove forests were analyzed. The concentration of total antibiotics (∑antibiotics) ranged from 78.4 ng/L to 225.6 ng/L in surface water (except S14-A2) and from 19.5 ng/g dry weight (dw) to 229 ng/g dw in sediment. In the sediment, the concentrations of ∑antibiotics were relatively low (19.5-52.3 ng/g dw) at 75 % of the sampling sites, while they were high (95.7-229.0 ng/g dw) at a few sampling sites (S13-A1, S13D, S8D). The correlation analysis results showed that the Kd values of the 9 antibiotics were significantly positively correlated with molecular weight (MW), Kow, and LogKow. Risk assessment revealed that sulfamethoxazole (SMX) in surface water and SMX, enoxacin (ENX), ciprofloxacin (CFX), enrofloxacin (EFX), ofloxacin (OFX), and norfloxacin (NFX) in sediment had medium/high risk quotients (RQs) at 62.5 % and 25-100 %, respectively, of the sampling sites. The antibiotic mixture in surface water (0.06-3.36) and sediment (0.43-309) posed a high risk at 37.5 % and 66.7 %, respectively, of the sampling sites. SMX was selected as an indicator of antibiotic pollution in surface water to assist regulatory authorities in monitoring and managing antibiotic pollution in the aquaculture zone of Dongzhai Harbor. Overall, the results of the present study provide a comprehensive and detailed analysis of the characteristics of antibiotics in the aquaculture environment around the Dongzhai Harbor mangrove system and provide a theoretical basis for the source control of antibiotics in mangrove systems.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Wetlands , Aquaculture , Sulfamethoxazole/analysis , Water/analysis , Risk Assessment , China , Water Pollutants, Chemical/analysis , Environmental Monitoring
11.
JOR Spine ; 7(1): e1283, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38222817

ABSTRACT

Background: Intervertebral disc degeneration (IDD) is a common musculoskeletal disorder that contributes significantly to disability and healthcare costs. Serum urate concentration has been implicated in the development of various musculoskeletal conditions. While previous observational studies have suggested an association between the two conditions, it might confound the effect of serum urate concentrations on IDD. This Mendelian randomization (MR) study aimed to investigate the causal relationship between serum urate concentration and IDD. Methods: We performed a two-sample MR analysis using summary-level data from genome-wide association studies (GWAS) of serum urate concentration (n = 13 585 994 European ancestry) and IDD (n = 16 380 337 European ancestry). Single nucleotide polymorphisms (SNPs) significantly associated with serum urate concentration (p < 5 × 10-8) were selected as instrumental variables. The associations between genetically predicted serum urate concentration and IDD were estimated using the inverse-variance weighted (IVW) method, with sensitivity analyses employing the weighted median, MR-Egger, and MR-PRESSO approaches to assess the robustness of the findings. Results: In the primary IVW analysis, genetically predicted serum urate concentration was unrelated associated with IDD (odds ratio [OR] = 1.00, 95% confidence interval (CI): 1.00-1.00, p = 0.17)). The results remained consistent across the sensitivity analyses, and no significant directional pleiotropy was detected (MR-Egger intercept: p = 0.15). Conclusions: This MR study provides evidence that there is no causal relationship between serum urate concentration and IDD. It suggests previous observational associations may be confounded. Serum urate levels are unlikely to be an important contributor to IDD.

12.
Environ Sci Process Impacts ; 26(2): 451-460, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38289156

ABSTRACT

Microplastic (<5 mm) pollution has become a pressing environmental concern in recent years. The present study investigated the occurrence characteristics and assessed the ecological risk of microplastics in the surface water and sediment of the Chitian Reservoir, a drinking water source in Hainan province (China). The results indicated that microplastics were detected in the surface water and sediment of the Chitian Reservoir and its surrounding areas. The overall abundance of microplastics in the water was 3.05 ± 1.16 items per L and in the sediment was 0.15 ± 0.06 items per g dry weight, which is relatively low compared to other reservoirs in China. The dominant components of microplastics detected in the Chitian Reservoir were polypropylene (PP), rayon, and polyester. Physical morphology analysis of microplastics showed that fibers with small particle sizes (<1 mm) and white color were the predominant characteristics in both the surface water and sediment. The domestic sewage from surrounding residents and agricultural wastewater may be the primary sources of microplastics in the reservoir. Ecological risk assessment revealed that the overall pollution load index (PLI) in the surface water (0.65) and sediment (0.51) of the Chitian Reservoir and its surrounding area is at a low level. The potential ecological hazards (RI) of microplastics (0.13 to 336.78 in water; 0.23 to 465.93 in sediment) in most sites fall within the scope of level I, but those in a few sites are at level II due to the presence of polyvinyl chloride (PVC). This study enriches the data on microplastic pollution in inland reservoir systems, providing fundamental reference information for future ecotoxicological studies and the management of microplastic pollution control.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Microplastics , Plastics/analysis , Drinking Water/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water/analysis , China
13.
Int J Biol Macromol ; 255: 128266, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984584

ABSTRACT

In this study, (-)-Epigallocatechin-3-O-gallate (EGCG) esterification reaction was catalyzed by Novozym 435, Lipozyme RM, Lipozyme TLIM, and lipase Amano 30SD in acetonitrile. Fourier transform infrared spectroscopy (FTIR) and molecular dynamic (MD) simulations were used to analyze the structural stability of different lipases in acetonitrile and their effect on EGCG esterification reaction. The results showed that conversion rate of EGCG catalyzed by Lipozyme RM was the highest, followed by Lipozyme TLIM. FTIR indicated that the secondary structure of Lipozyme RM was the most stable. MD simulations suggested that whole structural stability of Lipozyme RM in acetonitrile was superior to Novozym 435 and lipase Amano 30SD and similar to Lipozyme TLIM due to their similar conformation, while the active site of Lipozyme RM is more flexible than that of Lipozyme TLIM, which indicated that lipase with stable whole structure and flexible active site may be more conducive to the esterification of EGCG in acetonitrile. This study provided a direction for rapidly screening lipase to synthetize EGCG or other polyphenols esterified derivatives.


Subject(s)
Lipase , Molecular Dynamics Simulation , Esterification , Spectroscopy, Fourier Transform Infrared , Lipase/chemistry , Acetonitriles , Enzymes, Immobilized/chemistry
14.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4915-4926, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38147991

ABSTRACT

A simple, fast, and visual method for detecting antibodies against peste des petits ruminants virus (PPRV) using colloidal gold strips was developed. In this study, the pET-32a-N was transformed into Escherichia coli Rosetta (DE3) for expression. Hybridoma cell lines were generated by fusing SP2/0 myeloma cells with splenocytes from immunized mice with the expressed and purified N protein of PPRV. The PPRV N protein was labeled with colloidal gold particles as the gold-labeled antigen. The N protein served as the gold standard antigen and as the test (T) line-coated antigen, while the monoclonal antibody served as the quality control (C) line-coated antibody to assemble the colloidal gold immunochromatographic test strips for detecting antibodies against the N protein of PPRV. Hybridoma cell line designated as 1F1 was able to stably secrete the monoclonal antibody against the N protein of PPRV. The titer of 1F1 monoclonal antibody in ascites was 1:128 000 determined by indirect enzyme-linked immunosorbent assays (ELISA), and the immunoglobulin subtype of the monoclonal antibody was IgG1, with kappa chain. The obtained monoclonal antibody was able to specifically recognize the N protein of PPRV, as shown by Western blotting and indirect immunofluorescent assay (IFA). The developed colloidal gold test strip method was able to detect PPRV antibodies specifically, and there was no difference between different batches of the test strips. Testing of a total of 122 clinical sera showed that the compliance rate of the test strip with ELISA test was 97.6%.The test strip assay developed in this study has good specificity, reproducibility, and sensitivity, and it can be used for the rapid detection of PPRV antibodies.


Subject(s)
Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Mice , Peste-des-Petits-Ruminants/diagnosis , Peste-des-Petits-Ruminants/prevention & control , Antibodies, Monoclonal , Reproducibility of Results , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Goats
15.
ACS Chem Neurosci ; 14(17): 3019-3024, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37607046

ABSTRACT

Recent studies have found that ß-amyloid (Aß) oligomers may play much more important roles than amyloid plaques in the pathogenesis of Alzheimer's disease (AD). However, due to the complexity of Aß, studying the structural basis of Aß oligomer toxicity is challenging. Here, we assessed the amphiphilic property and ß-hairpin structure of Aß monomer. The potential impacts of Aß oligomers and three sequence-modifying peptides on the enzyme activities of horseradish peroxidase (HRP) and alkaline phosphatase (ALP) were further evaluated. We demonstrated that Aß oligomer possesses the ability to alter the activity of two enzymes. Moreover, modifications on the hydrophobic region and ß-turn structure of Aß monomer significantly alter its impacts on the enzyme activities. In addition, these modifications also change the bonding modes of Aß monomers or oligomers binding to HRP, as assessed by molecular docking. All of these findings provide direct experimental evidence to reveal the critical roles of the amphiphilic property and ß-sheet structure of Aß monomer in its impacts on protein activity.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Alkaline Phosphatase , Horseradish Peroxidase , Molecular Docking Simulation , Coloring Agents
16.
J Food Sci ; 88(8): 3577-3593, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37458288

ABSTRACT

This study explores potential hypoglycemic mechanisms by preparing and identifying novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from goat milk (GM) whey protein. Papain was used to hydrolyze the GM whey protein. After purification by ultrafiltration, the Sephadex column, and preparative RP-HPLC, the peptide inhibited DPP-IV, α-glucosidase, and α-amylase with IC50 of 0.34, 0.37, and 0.72 mg/mL, respectively. To further explore the inhibitory mechanism of peptides on DPP-IV, SPPEFLR, LDADGSY, YPVEPFT, and FNPTY were identified and synthesized for the first time, with IC50 values of 56.22, 52.16, 175.7, and 62.32 µM, respectively. Molecular docking and dynamics results show that SPPEFLR, LDADGSY, and FNPTY bind more tightly to the active pocket of DPP-IV, which was consistent with the in vitro activity. Furthermore, the first three N-terminals of SPPEFLR and FNPTY peptides exhibit proline characteristics and competitively inhibit DPP-IV. Notably, the first N-terminal leucine of LDADGSY may play a key role in inhibiting DPP-IV.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Milk , Animals , Whey Proteins/metabolism , Molecular Docking Simulation , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Goats
17.
Sci Total Environ ; 899: 165571, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37459992

ABSTRACT

Rice-vegetable rotations are dominant in (sub)-tropical agriculture worldwide. However, fate and risks of the insecticide flonicamid (FLO) and its main degradates (collectively called FLOMs) in multiple substrates from those cropping systems remain largely unknown. In this study, we characterized residual concentrations, driving factors, transport, and potential ecological risks of FLOMs in different substrates in 28 tropical rice-vegetable rotations. Concentrations (median) of FLOMs were 0.013-3.03 (0.42) ng g-1 in plants, 0.012-1.92 (0.23) ng g-1 in soil, 0.029-0.63 (0.126) µg L-1 in water, and 0.002-0.398 (0.055) ng g-1 in sediments. Flonicamid and its metabolite N-(4-trifluoromethylnicotinoyl) glycine were the dominant species in the four substrates (84.1 % to 88.5 %). Plants had the highest levels of FLOMs, with the highest bioconcentration factor in peppers. According to boosted regression trees coupled with a partial least squares structural equation model, levels and composition of FLOMs showed high spatiotemporal and crop-related patterns in different substrates, with patterns highly codetermined by agricultural practices (e.g., crop type and FLO/neonicotinoid/pyrethroid applications), substrate parameters (e.g., pH, organic matter or total organic carbon), and climate features (e.g., wet/dry seasons). Moreover, a fugacity method indicated differences in transport and partitioning patterns in different substrates during rice and vegetable planting periods. Integrated substrate risk assessment of FLOMs contamination was conducted based on species-sensitive distributions and substrate weight index. Although overall risks of FLOM contamination in tropical rice-vegetable rotations were negligible to low, the highest risks were in soils, vegetable planting periods, and a central intensively planted area.


Subject(s)
Oryza , Vegetables , Vegetables/chemistry , Oryza/metabolism , Agriculture/methods , Soil/chemistry , China
18.
Environ Monit Assess ; 195(7): 905, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37382693

ABSTRACT

For the first time, this study explored spatio-temporal variation in water quality and phytoplankton community structure in Changwang, Meishe, and Wuyuan Rivers in tropical Hainan Island, China. Phytoplankton samples and water were collected between March and December 2019 and analyzed using standard methods. Two-way ANOVA revealed significant spatial and seasonal variation in physico-chemical parameters (p < 0.05). Wuyuan had high TP (0.06 ± 0.04 mg L-1), TN (1.14 ± 0.71 mg L-1), NH4+-N (0.07 ± 0.09 mg L-1), Secchi depth (2.28 ± 3.79 m), salinity (3.60±5.50 ppt), and EC (332.50 ± 219.10 µS cm-1). At the same time, Meishe had high TP (0.07 ± 0.03 mg L-1), TN (1.04 ± 0.74 mg L-1), NH4+-N (0.07 ± 0.10 mg L-1), EC (327.61 ± 63.22 µS cm-1), and turbidity (40.25 ± 21.16 NTU). In terms of seasons, spring recorded high average TP, TN, NH4+-N, COD, and DO, while summer had a high temperature, Chl-a, salinity, and EC. Generally, the physico-chemical parameters met the China water quality standard limits (GB 3838-2002). Overall, 197 phytoplankton species belonging to Cyanophyta, Chlorophyta, Cryptophyta, Bacillariophyta, Pyrrophyta, Euglenophyta, Xanthophyta, and Chrysophyta were identified, with Cyanophyta being dominant. Phytoplankton density showed spatial changes varying from 18 × 106 cell L-1 to 84 × 106 cell L-1. The phytoplankton diversity ranged from 1.86 to 2.41, indicating a mesotrophic state. One-way ANOSIM showed no significant spatial dissimilarity in phytoplankton composition (R = 0.042, p = 0.771) but indicated a significant seasonal difference (R = 0.265, p = 0.001). Therefore, SIMPER analysis revealed that Lyngbya attenuata, Merismopedia tenuissima, Cyclotella sp., Merismopedia glauca, Merismopedia elegans, and Phormidium tenue contributed to the seasonal differences. Furthermore, CCA demonstrated that TP, TN, NH4+-N, COD, Chl-a, and Secchi depth greatly influenced the phytoplankton community. This study shows the spatio-temporal variation in water quality and phytoplankton communities, useful for managing riverine quality.


Subject(s)
Diatoms , Phytoplankton , Rivers , Water Quality , Environmental Monitoring , China
19.
Food Funct ; 14(14): 6526-6540, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37377000

ABSTRACT

Milk can improve sleep, and the effects of different animal milks vary. Accordingly, we evaluated the effectiveness of goat milk and cow milk in alleviating insomnia. The findings demonstrated that both goat milk and cow milk significantly increased the length of time that mice with insomnia slept compared to the model group and lowered the relative abundance of Colidextribacter, Escherichia-Shigella, and Proteus in these mice. A notable finding was that goat milk considerably increased the relative abundance of Dubosiella, Bifidobacterium, Lactobacillus, and Mucispirillum, whereas cow milk dramatically increased the relative abundance of Lactobacillus and Acinetobacter. Diazepam therapy could lengthen the slumber of mice; however, analysis of bacteria indicated that although the relative abundance of dangerous bacteria such as Mucispirillum, Parasutterella, Helicobacter, and Romboutsia increased, that of Blautia and Faecalibaculum decreased. Both Listeria and Clostridium experienced a large increase in relative abundance. Additionally, goat milk provided efficient restoration of neurotransmitters including 5-HT, GABA, DA, and NE. Besides that, the expression of genes and proteins for CREB, BDNF, and TrkB in the hypothalamus was up-regulated, and the pathophysiology of the hypothalamus was improved. Overall, the effects of goat and cow milk on insomnia in mouse models differed, and goat milk is preferred over cow milk.


Subject(s)
Microbiota , Sleep Initiation and Maintenance Disorders , Cattle , Female , Mice , Animals , Milk/microbiology , Goats , Sleep Initiation and Maintenance Disorders/drug therapy , Allergens , Bacteria/genetics , Disease Models, Animal
20.
Orthop J Sports Med ; 11(5): 23259671231172773, 2023 May.
Article in English | MEDLINE | ID: mdl-37346776

ABSTRACT

Background: Exercise is an effective nonpharmaceutical therapy for knee osteoarthritis (KOA). Purpose: To identify the most effective type of exercise therapy for KOA with regard to pain, stiffness, joint function, and quality of life. Study Design: Systematic review; Level of evidence, 3. Methods: The PubMed, Web of Science, Embase, and Cochrane Library databases were searched, from inception to April 4, 2022. Included were randomized controlled trials that assessed the efficacy on KOA among 5 different exercise therapy groups (aquatic exercise [AE], stationary cycling [CY], resistance training [RT], traditional exercise [TC], and yoga [YG]) and compared with the control group. Outcomes among the groups were assessed with the Western Ontario and McMaster University Osteoarthritis Index (WOMAC), 6-minute walk test (6-MWT), visual analog scale (VAS) for pain, and Knee injury and Osteoarthritis Outcome Score (KOOS); weighted mean differences (WMDs) and 95% confidence intervals were calculated. Network meta-analyses comparing outcomes between all groups and with controls were performed, and group rankings were calculated using the surface under the cumulative ranking curve (SUCRA). Results: A total of 39 studies (N = 2646 participants) were included. Most of the studies failed to blind participants and researchers, resulting in a high risk of performance bias. Significantly worse WOMAC-Pain scores were seen in controls compared with all exercise interventions except AE (WMD [95% CI]: CY, -4.45 [-5.69 to -3.20]; RT, -4.28 [-5.48 to -3.07]; TC, -4.20 [-5.37 to -3.04]; and YG, -0.57 [-1.04 to -1.04]), and worse scores were seen in controls compared with YG regarding WOMAC-Stiffness (WMD, -1.40 [95% CI, -2.45 to -0.34]) and WOMAC-Function (WMD, -0.49 [95% CI, -0.95 to -0.02]). According to the SUCRA, CY was the most effective for improving WOMAC-Pain (80.8%) and 6-MWT (76.1%); YG was most effective for improving WOMAC-Stiffness (90.6%), WOMAC-Function (77.4%), KOOS-Activities of Daily Living (72.0%), and KOOS-Quality of Life (79.1%); AE was the most effective regarding VAS pain (77.2%) and KOOS-Pain (64.0%); and RT was the most effective regarding KOOS-Symptoms (84.5%). Conclusion: All 5 types of exercise were able to ameliorate KOA. AE (for pain relief) and YG (for joint stiffness, limited knee function, and quality of life) were the most effective approaches, followed by RT, CY, and TC.

SELECTION OF CITATIONS
SEARCH DETAIL
...