Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 18522, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122821

ABSTRACT

One major limitation of effective vaccine delivery is its dependency on a robust cold chain infrastructure. While Vesicular stomatitis virus (VSV) has been demonstrated to be an effective viral vaccine vector for diseases including Ebola, its -70 °C storage requirement is a significant limitation for accessing disadvantaged locations and populations. Previous work has shown thermal stabilization of viral vaccines with a combination of pullulan and trehalose (PT) dried films. To improve the thermal stability of VSV, we optimized PT formulation concentrations and components, as well as drying methodology with enhanced vacuum drying. When formulated in PT films, VSV can be stored for 32 weeks at 4 °C with less than 2 log PFU loss, at 25 °C with 2.5 log PFU loss, and at 37 °C with 3.1 log PFU loss. These results demonstrate a significant advancement in VSV thermal stabilization, decreasing the cold chain requirements for VSV vectored vaccines.


Subject(s)
Glucans , Trehalose , Trehalose/chemistry , Glucans/chemistry , Vacuum , Genetic Vectors , Desiccation/methods , Viral Vaccines/chemistry , Vesiculovirus/genetics , Animals , Temperature
2.
ACS Omega ; 7(20): 16939-16951, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35647460

ABSTRACT

Existing pharmacotherapies acting on the opioid receptor system have been extensively used to treat chronic pain and addictive disorders. Nevertheless, the adverse side effects associated with opioid therapy underscore the need for concerted measures to develop safer analgesics. A promising avenue of research stems from the characterization of a sodium-dependent allosteric regulation site housed within the delta-opioid receptor and several other G protein-coupled receptors (GPCRs), thereby revealing the presence of a cluster of sodium and water molecules lodged in a cavity thought to be present only in the inactive conformation of the receptor. Studies into the structure-function relationship of said pocket demonstrated its critical involvement in the functional control of GPCR signaling. While the sodium pocket has been proposed to be present in the majority of class A GPCRs, the shape of this allosteric cavity appears to have significant structural variation among crystallographically solved GPCRs, making this site optimal for the design of new allosteric modulators that will be selective for opioid receptors. The size of the sodium pocket supports the accommodation of small molecules, and it has been speculated that promiscuous amiloride and 5'-substituted amiloride-related derivatives could target this cavity within many GPCRs, including opioid receptors. Using pharmacological approaches, we have described the selectivities of 5'-substituted amiloride-related derivatives, as well as the hitherto undescribed activity of the NHE1 inhibitor zoniporide toward class A GPCRs. Our investigations into the structural features of the delta-opioid receptor and its ensuing signaling activities suggest a bitopic mode of overlapping interactions involving the orthosteric site and the juxtaposed Na+ pocket, but only at the active or partially active opioid receptor.

3.
mBio ; 12(3): e0078821, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34182784

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that is continuously evolving. Although its RNA-dependent RNA polymerase exhibits some exonuclease proofreading activity, viral sequence diversity can be produced by replication errors and host factors. A diversity of genetic variants can be observed in the intrahost viral population structure of infected individuals. Most mutations will follow a neutral molecular evolution and will not make significant contributions to variations within and between infected hosts. Herein, we profiled the intrasample genetic diversity of SARS-CoV-2 variants, also known as quasispecies, using high-throughput sequencing data sets from 15,289 infected individuals and infected cell lines. Despite high mutational background, we identified recurrent intragenetic variable positions in the samples analyzed, including several positions at the end of the gene encoding the viral spike (S) protein. Strikingly, we observed a high frequency of C→A missense mutations resulting in the S protein lacking the last 20 amino acids (SΔ20). We found that this truncated S protein undergoes increased processing and increased syncytium formation, presumably due to escaping M protein retention in intracellular compartments. Our findings suggest the emergence of a high-frequency viral sublineage that is not horizontally transmitted but potentially involved in intrahost disease cytopathic effects. IMPORTANCE The mutation rate and evolution of RNA viruses correlate with viral adaptation. While most mutations do not make significant contributions to viral molecular evolution, some are naturally selected and produce variants through positive selection. Many SARS-CoV-2 variants have been recently described and show phenotypic selection toward more infectious viruses. Our study describes another type of variant that does not contribute to interhost heterogeneity but rather phenotypic selection toward variants that might have increased cytopathic effects. We identified that a C-terminal truncation of the spike protein removes an important endoplasmic reticulum (ER) retention signal, which consequently results in a spike variant that easily travels through the Golgi complex toward the plasma membrane in a preactivated conformation, leading to increased syncytium formation.


Subject(s)
COVID-19/pathology , Genome, Viral/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Cell Line , Evolution, Molecular , Genetic Variation/genetics , Giant Cells/virology , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Mutation Rate , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL