Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Glia ; 71(1): 91-102, 2023 01.
Article in English | MEDLINE | ID: mdl-35411970

ABSTRACT

In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.


Subject(s)
Endocannabinoids , Oligodendroglia , Endocannabinoids/metabolism , Oligodendroglia/metabolism , Myelin Sheath/metabolism , Axons/metabolism , Central Nervous System/metabolism , Cell Differentiation/physiology
2.
J Neurotrauma ; 39(23-24): 1678-1686, 2022 12.
Article in English | MEDLINE | ID: mdl-35607859

ABSTRACT

Patients with spinal cord injury (SCI) frequently develop infections that may affect quality of life, be life-threatening, and impair their neurological recovery in the acute and subacute injury phases. Therefore, identifying patients with SCI at risk for developing infections in this stage is of utmost importance. We determined the systemic levels of immune cell populations, cytokines, chemokines, and growth factors in 81 patients with traumatic SCI at 4 weeks after injury and compared them with those of 26 age-matched healthy control subjects. Patients who developed infections between 4 and 16 weeks after injury exhibited higher numbers of neutrophils and eosinophils, as well as lower numbers of lymphocytes and eotaxin-1 (CCL11) levels. Accordingly, lasso logistic regression showed that incomplete lesions (American Spinal Injury Association Impairment Scale [AIS] C and D grades), the levels of eotaxin-1, and the number of lymphocytes, basophils, and monocytes are predictive of lower odds for infections. On the other hand, the number of neutrophils and eosinophils as well as, in a lesser extent, the levels of IP-10 (CXCL10), MCP-1 (CCL2), BDNF [brain-derived neurotrophic factor], and vascular endothelial growth factor [VEGF]-A, are predictors of increased susceptibility for developing infections. Overall, our results point to systemic immune disbalance after SCI as predictors of infection in a period when infections may greatly interfere with neurological and functional recovery and suggest new pathways and players to further explore novel therapeutic strategies.


Subject(s)
Spinal Cord Injuries , Vascular Endothelial Growth Factor A , Humans , Quality of Life , Recovery of Function , Eosinophils , Spinal Cord
3.
Cells ; 11(8)2022 04 09.
Article in English | MEDLINE | ID: mdl-35455962

ABSTRACT

The risk of complications following surgical procedures is significantly increased in patients with SARS-CoV-2 infection. However, the mechanisms underlying these correlations are not fully known. Spinal cord injury (SCI) patients who underwent reconstructive surgery for pressure ulcers (PUs) before and during the COVID-19 pandemic were included in this study. The patient's postoperative progression was registered, and the subcutaneous white adipose tissue (s-WAT) surrounding the ulcers was analyzed by proteomic and immunohistochemical assays to identify the molecular/cellular signatures of impaired recovery. Patients with SCI and a COVID-19-positive diagnosis showed worse recovery and severe postoperative complications, requiring reintervention. Several proteins were upregulated in the adipose tissue of these patients. Among them, CKMT2 and CKM stood out, and CKM increased for up to 60 days after the COVID-19 diagnosis. Moreover, CKMT2 and CKM were largely found in MGCs within the s-WAT of COVID patients. Some of these proteins presented post-translational modifications and were targeted by autoantibodies in the serum of COVID patients. Overall, our results indicate that CKMT2, CKM, and the presence of MGCs in the adipose tissue surrounding PUs in post-COVID patients could be predictive biomarkers of postsurgical complications. These results suggest that the inflammatory response in adipose tissue may underlie the defective repair seen after surgery.


Subject(s)
COVID-19 , Pressure Ulcer , Spinal Cord Injuries , Adipose Tissue/metabolism , COVID-19/complications , COVID-19 Testing , Creatine Kinase/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Humans , Pandemics , Pressure Ulcer/epidemiology , Pressure Ulcer/etiology , Pressure Ulcer/surgery , Proteomics , SARS-CoV-2 , Spinal Cord Injuries/complications , Spinal Cord Injuries/surgery , Suppuration/complications , Up-Regulation
4.
J Neurotrauma ; 39(9-10): 613-626, 2022 05.
Article in English | MEDLINE | ID: mdl-34937399

ABSTRACT

Sensorimotor function of patients with spinal cord injury (SCI) is commonly assessed according to the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). From the ISNCSCI segmental motor and sensory assessments, upper and lower extremity motor scores (UEMS and LEMS), sum scores of pinprick (PP) and light touch (LT) sensation, the neurological level of injury (NLI) and the classification of lesion severity according to the American Spinal Injury Association Impairment Scale (AIS) grade are derived. Changes of these parameters over time are used widely to evaluate neurological recovery. Evaluating recovery based on a single ISNCSCI scoring or classification variable, however, may misestimate overall recovery. Here, we propose an Integrated Neurological Change Score (INCS) based on the combination of normalized changes between two time points of UEMS, LEMS, and total PP and LT scores. To assess the agreement of INCS with clinical judgment of meaningfulness of neurological changes, changes of ISNCSCI variables between two time points of 88 patients from an independent cohort were rated by 20 clinical experts according to a five-categories Likert Scale. As for individual ISNCSCI variables, neurological change measured by INCS is associated with severity (AIS grade), age, and time since injury, but INCS better reflects clinical judgment about meaningfulness of neurological changes than individual ISNCSCI variables. In addition, INCS is related to changes in functional independence measured by the Spinal Cord Independence Measure (SCIM) in patients with tetraplegia. The INCS may be a useful measure of overall neurological change in clinical studies.


Subject(s)
Spinal Cord Injuries , Humans , Quadriplegia/complications , Recovery of Function , Sensation , Upper Extremity
5.
Cells ; 10(9)2021 08 28.
Article in English | MEDLINE | ID: mdl-34571884

ABSTRACT

In species that regenerate the injured spinal cord, the ependymal region is a source of new cells and a prominent coordinator of regeneration. In mammals, cells at the ependymal region proliferate in normal conditions and react after injury, but in humans, the central canal is lost in the majority of individuals from early childhood. It is replaced by a structure that does not proliferate after damage and is formed by large accumulations of ependymal cells, strong astrogliosis and perivascular pseudo-rosettes. We inform here of two additional mammals that lose the central canal during their lifetime: the Naked Mole-Rat (NMR, Heterocephalus glaber) and the mutant hyh (hydrocephalus with hop gait) mice. The morphological study of their spinal cords shows that the tissue substituting the central canal is not similar to that found in humans. In both NMR and hyh mice, the central canal is replaced by tissue reminiscent of normal lamina X and may include small groups of ependymal cells in the midline, partially resembling specific domains of the former canal. However, no features of the adult human ependymal remnant are found, suggesting that this structure is a specific human trait. In order to shed some more light on the mechanism of human central canal closure, we provide new data suggesting that canal patency is lost by delamination of the ependymal epithelium, in a process that includes apical polarity loss and the expression of signaling mediators involved in epithelial to mesenchymal transitions.


Subject(s)
Ependyma/cytology , Spinal Cord/cytology , Adolescent , Adult , Animals , Biomarkers/metabolism , Cell Proliferation , Ependyma/metabolism , Female , Humans , Macaca mulatta , Male , Mice, Mutant Strains , Middle Aged , Mole Rats , Pan troglodytes , Point Mutation , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Species Specificity , Spinal Canal/cytology , Spinal Canal/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Young Adult
6.
J Neurochem ; 158(3): 640-656, 2021 08.
Article in English | MEDLINE | ID: mdl-33942314

ABSTRACT

CB1 cannabinoid receptor is widely expressed in the central nervous system of animals from late prenatal development to adulthood. Appropriate activation and signaling of CB1 cannabinoid receptors in cortical interneurons are crucial during perinatal/postnatal ages and adolescence, when long-lasting changes in brain activity may elicit subsequent appearance of disorders in the adult brain. Here we used an optimized immunoprecipitation protocol based on specific antibodies followed by shot-gun proteomics to find CB1 interacting partners in postnatal rat GABAergic cortical neurons in vitro at two different stages of maturation. Besides describing new proteins associated with CB1 like dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), fatty acid synthase (FASN), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), voltage-dependent anion channel 1 (VDAC1), myosin phosphatase Rho-interacting protein (MPRIP) or usher syndrome type-1C protein-binding protein 1 (USHBP1), we show that the signaling complex of CB1 is different between maturational stages. Interestingly, the CB1 signaling complex is enriched at the more immature stage in mitochondrial associated proteins and metabolic molecular functions, whereas at more mature stage, CB1 complex is increased in maturation and synaptic-associated proteins. We describe also interacting partners specifically immunoprecipitated with either N-terminal or C-terminal CB1 directed antibodies. Our results highlight new players that may be affected by altered cannabinoid signaling at this critical window of postnatal cortical development.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/metabolism , GABAergic Neurons/physiology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Animals , Cells, Cultured , Female , Pregnancy , Rats , Rats, Wistar , Signal Transduction/physiology
8.
J Neurosci Methods ; 337: 108680, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32145227

ABSTRACT

BACKGROUND: Cannabinoid receptor 1 (CB1) identification by western blot (WB) has generated a great deal of controversial data making the interpretation of the results difficult. Our purpose is to find the most adequate experimental conditions to detect CB1 by WB and immunoprecipitation (IP) as a first step towards the study of CB1 interactome. NEW METHOD: We use CB1 knockout mice tissue as negative controls and describe appropriate sample handling conditions for CB1 detection by WB and IP from brain and cortical neuron cultures. RESULTS: Sample heating above 65 °C greatly impaired CB1 detection by WB, since it favored the formation of high molecular weight aggregates. We also show the convenience of using n-dodecyl-ß-d-maltoside (DDM) as a detergent for the detection of CB1 by WB and, mostly, for IP. COMPARISON WITH EXISTING METHOD(S): We obtain consistent and specific CB1 detection by WB and IP using four different commercial antibodies and KO tissue for an accurate CB1 identification. We clarify the identification of the receptor in complex samples compared with the diverse and unclear results obtained using standard WB methods. CONCLUSIONS: We establish experimental guidelines for the detection of CB1 by WB and the study of CB1 interacting proteins by IP. We propose a new interpretation of CB1 WB and IP data based on the folding and packing state of the protein and the detergent used. The standardization of the most advantageous conditions for coimmunoprecipitation (CoIP) would be a useful tool for the future study of the interactome of CB1.


Subject(s)
Brain , Eating , Animals , Blotting, Western , Mice , Mice, Knockout , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid/genetics
9.
Br J Pharmacol ; 176(10): 1361-1369, 2019 05.
Article in English | MEDLINE | ID: mdl-29797438

ABSTRACT

Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Subject(s)
Brain/pathology , Cell Differentiation/physiology , Cell Proliferation/physiology , Endocannabinoids/metabolism , Neurons/pathology , Oligodendroglia/pathology , Animals , Brain/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Neurons/metabolism , Oligodendroglia/metabolism , Receptors, Cannabinoid/metabolism
10.
Front Immunol ; 9: 2365, 2018.
Article in English | MEDLINE | ID: mdl-30364218

ABSTRACT

Spinal cord injury (SCI) results in long-term neurological and systemic consequences, including antibody-mediated autoimmunity, which has been related to impaired functional recovery. Here we show that autoantibodies that increase at the subacute phase of human SCI, 1 month after lesion, are already present in healthy subjects and directed against non-native proteins rarely present in the normal spinal cord. The increase of these autoantibodies is a fast phenomenon-their levels are already elevated before 5 days after lesion-characteristic of secondary immune responses, further supporting their origin as natural antibodies. By proteomics studies we have identified that the increased autoantibodies are directed against 16 different nervous system and systemic self-antigens related to changes known to occur after SCI, including alterations in neural cell cytoskeleton, metabolism and bone remodeling. Overall, in the context of previous studies, our results offer an explanation to why autoimmunity develops after SCI and identify novel targets involved in SCI pathology that warrant further investigation.


Subject(s)
Autoantibodies/immunology , Disease Susceptibility , Spinal Cord Injuries/etiology , Adult , Animals , Astrocytes/metabolism , Biomarkers , Disease Models, Animal , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunohistochemistry , Male , Middle Aged , Neurons/metabolism , Oligodendroglia/metabolism , Rats , Severity of Illness Index , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
11.
Biochem Pharmacol ; 157: 180-188, 2018 11.
Article in English | MEDLINE | ID: mdl-30195734

ABSTRACT

While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and ß (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration. By contrast, increasing the levels of endogenous 2-AG by blocking its degradation (impairing monoacylglycerol lipase activity with JZL-184) significantly increased OPC migration, as did agonists of the CB1, CB2 or CB1/CB2 cannabinoid receptors. This latter effect was abolished by selective CB1 or CB2 antagonists, strongly suggesting that cannabinoid receptor activation specifically potentiates OPC chemotaxis and chemokinesis in response to PDGF/FGF. Furthermore, the chemoattractive activity of these cannabinoid receptor agonists on OPCs was even evident in the absence of PDGF/FGF. In cultured brain slices prepared from the corpus callosum of postnatal rat brains, DAGL or cannabinoid receptor inhibition substantially diminished the in situ migration of Sox10+ OPCs. Overall, these results reveal a novel function of endogenous 2-AG in PDGF and FGF induced OPC migration, highlighting the importance of the endocannabinoid system in regulating essential steps in oligodendrocyte development.


Subject(s)
Arachidonic Acids/physiology , Cell Movement , Endocannabinoids/physiology , Glycerides/physiology , Oligodendroglia/physiology , Stem Cells/physiology , Animals , Arachidonic Acids/antagonists & inhibitors , Arachidonic Acids/biosynthesis , Arachidonic Acids/metabolism , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Cell Movement/drug effects , Cells, Cultured , Corpus Callosum/cytology , Endocannabinoids/antagonists & inhibitors , Endocannabinoids/biosynthesis , Endocannabinoids/metabolism , Glycerides/antagonists & inhibitors , Glycerides/biosynthesis , Glycerides/metabolism , Rats, Wistar
12.
J Pathol ; 246(4): 415-421, 2018 12.
Article in English | MEDLINE | ID: mdl-30091291

ABSTRACT

In vertebrates that regenerate the injured spinal cord, cells at the ependymal region proliferate and coordinate the formation of bridges between the lesion stumps. In mammals, these cells also proliferate profusely around the central canal after spinal cord injury, although their actual contribution to repair is controversial. In humans, however, the central canal disappears from early childhood in the majority of individuals, being replaced by astrocyte gliosis, ependymocyte clusters, and perivascular pseudo-rosettes. In this human ependymal remnant, cells do not proliferate under normal conditions, but it is not known if they do after a lesion. Here, we studied the human ependymal remnant after traumatic spinal cord injury using samples from 21 individuals with survival times ranging from days to months post-injury. With three different monoclonal antibodies raised against two different proliferation markers (Ki67 and MCM2), we found that the ependymal remnant in adult humans does not proliferate after injury at any time or distance from the lesion. Our results seriously challenge the view of the spinal cord ependymal region as a neurogenic niche in adult humans and suggest that it would not be involved in cell replacement after a lesion. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Cell Proliferation , Ependyma/pathology , Nerve Regeneration , Neural Stem Cells/pathology , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Ependyma/metabolism , Female , Humans , Ki-67 Antigen/metabolism , Male , Middle Aged , Minichromosome Maintenance Complex Component 2/metabolism , Neural Stem Cells/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Stem Cell Niche , Time Factors
13.
Methods Mol Biol ; 1723: 285-318, 2018.
Article in English | MEDLINE | ID: mdl-29344868

ABSTRACT

In the last few decades many efforts have been dedicated to decipher the nature and regenerative potential of neurogenic niches and endogenous stem cells after damage of the central nervous system. In the spinal cord, it has been largely focused on the ependymal region, which hosts neural precursors/stem cells (NSC) in rodents but differs between species and ages. In the current chapter, we detail our protocol to study the gene expression profile of this region using fresh frozen blocks of rat and human post-mortem spinal cords. We describe how to prepare and process those tissues, how to identify and dissect the ependymal region using Laser-Capture Microdissection (LCMD), and how to isolate and amplify RNA with different integrity states to finally obtain enough material for performing gene expression assays using Taqman® Low Density Arrays. LCMD technique maintains tissue integrity allowing for subsequent analysis without manipulation steps that may alter molecular properties of cells and the eventual loss of delicate cell types in comparison with other approaches that require previous disaggregation of the tissue and cell manipulation before isolation.


Subject(s)
Ependyma/metabolism , Laser Capture Microdissection/methods , RNA/analysis , Real-Time Polymerase Chain Reaction/methods , Spinal Cord/metabolism , Animals , Humans , Rats
14.
Adv Pharmacol ; 80: 135-168, 2017.
Article in English | MEDLINE | ID: mdl-28826533

ABSTRACT

Recreational use of synthetic cannabinoids (SCB), a class of novel psychoactive substances is an increasing public health problem specifically in Western societies, with teenagers, young adults, and the prison population being the most affected. Some of these SCB are analogs of tetrahydrocannabinol, aminoalkylindoles, and other phytocannabinoid analogs have been detected in herbal preparations generically called "Spice." Spice, "K2" or "fake cannabis" is a general term used for variable herbal mixtures of unknown ingredients or chemical composition. SCB are highly potent CB1 cannabinoid receptor agonists falsely marketed and sold as safe and legal drugs. Here, we present an overview of the endocannabinoid system, CB, and SCB chemical structures and activity at CB receptors. Finally, we highlight the psychological effects of SCB, particularly on learning and memory, and adverse clinical effects including on the cardiovascular system, kidneys, and CNS, including psychosis. Taken together, it is clear that many SCB are extremely dangerous and a major public health problem.


Subject(s)
Cannabinoids/adverse effects , Cannabinoids/chemistry , Cannabinoids/metabolism , Cannabinoids/pharmacology , Humans , Memory/drug effects , Psychotic Disorders/pathology , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/drug effects
15.
Article in English | MEDLINE | ID: mdl-25805333

ABSTRACT

Spinal cord injury (SCI) is a devastating condition for which there is no standard treatment beyond rehabilitation strategies. In this review, we discuss the current knowledge on the use of cannabinoids to treat this condition. The endocannabinoid system is expressed in the intact spinal cord, and it is dramatically upregulated after lesion. Endogenous activation of this system counteracts secondary damage following SCI, and treatments with endocannabinoids or synthetic cannabinoid receptor agonists promote a better functional outcome in experimental models. The use of cannabinoids in SCI is a new research field and many questions remain open. Here, we discuss caveats and suggest some future directions that may help to understand the role of cannabinoids in SCI and how to take advantage of this system to regain functions after spinal cord damage.


Subject(s)
Cannabinoids/therapeutic use , Neuroprotective Agents/therapeutic use , Spinal Cord Injuries/drug therapy , Animals , Endocannabinoids/metabolism , Humans , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism
16.
Sci Rep ; 5: 17745, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26634814

ABSTRACT

Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.


Subject(s)
Ependyma/metabolism , Neural Stem Cells/metabolism , Receptor, Cannabinoid, CB1/biosynthesis , Spinal Cord/metabolism , Adult , Animals , Astrocytes/metabolism , Autopsy , Ependyma/pathology , Gene Expression Regulation , Humans , Laser Capture Microdissection , Mice , Rats , Receptor, Cannabinoid, CB1/metabolism , Spinal Cord/pathology
17.
J Neuroimmune Pharmacol ; 10(2): 309-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25900077

ABSTRACT

A basal tone of the endocannabinoid 2-arachidonoylglycerol (2-AG) enhances late oligodendrocyte progenitor cell (OPC) differentiation. Here, we investigated whether endogenous 2-AG may also promote OPC proliferation in earlier stages. We found that the blockade of 2-AG synthesizing enzymes, sn-1-diacylglycerol lipases α and ß (DAGLs), with RHC-80267 or the antagonism of either CB1 or CB2 cannabinoid receptors with AM281 and AM630, respectively, impaired early OPC proliferation stimulated by platelet-derived growth factor (PDGF-AA) and basic fibroblast growth factor (bFGF). On the contrary, increasing the levels of endogenous 2-AG by blocking the degradative enzyme monoacylglycerol lipase (MAGL) with JZL-184, significantly increased OPC proliferation as did agonists of cannabinoid receptor CB1 (ACEA), CB2 (JWH133) or both (HU-210). To elucidate signaling pathways underlying OPC proliferation, we studied the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt and its downstream target mammalian target of rapamycin (mTOR). We show that phosphorylation of Akt and mTOR is required for OPC proliferation stimulated by growth factors (PDGF-AA and bFGF) or by CB1/CB2 agonists (ACEA/JWH133), since it was strongly decreased after LY294002 or rapamycin treatment. In line with this, blockade of CB1 (AM281), CB2 (AM630) or DAGLs (RHC-80267), decreased phosphorylation of Akt, mTOR and 4E-BP1, diminished cyclin E-cdk2 complex association and increased p27(kip1) levels. Our data suggest that proliferation of early OPCs stimulated by PDGF-AA and bFGF depends on the tonic activation of cannabinoid receptors by endogenous 2-AG and provide further evidence on the role of endocannabinoids in oligodendrocyte development, being important for the maintenance and self-renewal of the OPCs. The results highlight the therapeutic potential of the endocannabinoid signaling in the emerging field of brain repair.


Subject(s)
Arachidonic Acids/pharmacology , Endocannabinoids/pharmacology , Glycerides/pharmacology , Oligodendroglia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cannabinoid Receptor Agonists/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Humans , Mice , Oligodendroglia/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Stem Cells/drug effects
18.
Brain ; 138(Pt 6): 1583-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25882650

ABSTRACT

Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries. We observed that the central canal is absent from the vast majority of individuals beyond the age of 18 years, gender-independently, throughout the entire length of the spinal cord, both in healthy controls and after injury; (ii) with histology and immunohistochemistry, we describe morphological properties of the non-lesioned ependymal region, which showed the presence of perivascular pseudorosettes, a common feature of ependymoma; and (iii) with laser capture microdissection, followed by TaqMan® low density arrays, we studied the gene expression profile of the ependymal region and found that it is mainly enriched in genes compatible with a low grade or quiescent ependymoma (53 genes); this region is enriched only in 14 genes related to neurogenic niches. In summary, we demonstrate here that the central canal is mainly absent in the adult human spinal cord and is replaced by a structure morphologically and molecularly different from that described for rodents and other primates. The presented data suggest that the ependymal region is more likely to be reminiscent of a low-grade ependymoma. Therefore, a direct translation to adult human patients of an eventual therapeutic potential of this region based on animal models should be approached with caution.


Subject(s)
Ependyma/anatomy & histology , Ependymoma/pathology , Spinal Cord Neoplasms/pathology , Spinal Cord/anatomy & histology , Spinal Cord/pathology , Adult , Aged , Aging/pathology , Case-Control Studies , Ependyma/metabolism , Ependyma/pathology , Ependymoma/genetics , Female , Gene Expression , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Species Specificity , Spinal Canal/anatomy & histology , Spinal Canal/pathology , Spinal Cord/metabolism , Spinal Cord Injuries/pathology , Young Adult
19.
J Neurotrauma ; 31(9): 857-71, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24460450

ABSTRACT

Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury.


Subject(s)
Motor Activity/drug effects , Progesterone/pharmacology , Progestins/pharmacology , Recovery of Function/drug effects , Spinal Cord Injuries/pathology , White Matter/drug effects , Animals , Disease Models, Animal , Immunohistochemistry , Magnetic Resonance Imaging , Male , Rats , Rats, Wistar
20.
Biochem Soc Trans ; 41(6): 1577-82, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24256257

ABSTRACT

Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis. Activation of cannabinoid receptors suppresses chronic inflammatory responses through the attenuation of pro-inflammatory mediators. Moreover, the endocannabinoid system directs cell fate specification of NSCs (neural stem cells) in the CNS (central nervous system). The aim of our work is to understand better the relationship between the endocannabinoid and the IL-1ß (interleukin-1ß) associated signalling pathways and NSC biology, in order to develop therapeutical strategies on CNS diseases that may facilitate brain repair. NSCs express functional CB1 and CB2 cannabinoid receptors, DAGLα (diacylglycerol lipase α) and the NSC markers SOX-2 and nestin. We have investigated the role of CB1 and CB2 cannabinoid receptors in the control of NSC proliferation and in the release of immunomodulators [IL-1ß and IL-1Ra (IL-1 receptor antagonist)] that control NSC fate decisions. Pharmacological blockade of CB1 and/or CB2 cannabinoid receptors abolish or decrease NSC proliferation, indicating a critical role for both CB1 and CB2 receptors in the proliferation of NSC via IL-1 signalling pathways. Thus the endocannabinoid system, which has neuroprotective and immunomodulatory actions mediated by IL-1 signalling cascades in the brain, could assist the process of proliferation and differentiation of embryonic or adult NSCs, and this may be of therapeutic interest in the emerging field of brain repair.


Subject(s)
Endocannabinoids/immunology , Interleukin-1beta/immunology , Neural Stem Cells/immunology , Neurogenesis/immunology , Signal Transduction/immunology , Brain/immunology , Brain/metabolism , Endocannabinoids/metabolism , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...