Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Stem Cell Rev Rep ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305404

ABSTRACT

Chorionic mesenchymal stromal cells (CHO-MSCs) and their extracellular vesicles (EVs) are becoming increasingly popular, since chorion is ethically harmless and an easily accessible source of MSCs. However, until now there is only a limited number of studies with a thorough characterization of CHO-MSCs derived EVs and their miRNA profile. In this study, we monitored changes in the EV-miRNA profile between early and late passage of human CHO-MSCs. First, senescence of CHO-MSCs was induced by serial passaging and confirmed by morphological changes, shortened telomeres and changes in the expression of selected genes. The expression of MSCs-specific surface markers CD73, CD90, CD105 did not change with increasing passages. Next, EVs and their miRNA profiles were compared between early vs late passage cells. Number of EVs and their size were not significantly changed. Seven of the top 10 most expressed EV-miRNAs were common to both early and late passages. A differential expression study between early and late passages identified 37 significantly differentially expressed EV-miRNAs, out of which 23 were found to be associated with pathways of cellular senescence based on KEGG pathway analysis. A set of 9 miRNAs were identified as the most frequently associated with senescence and/or with the most altered expression between early and late passages, out of which miR-145-5p, miR-335-5p and miR-199b-3p were the most significant downregulated miRNAs in late passages. The most upregulated EV-miRNAs were miR-1307-3p, miR-3615 and miR320b. Targeting these miRNAs in future experiments may prolong the therapeutic potential of CHO-MSCs and their EVs.

2.
Life (Basel) ; 13(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36836699

ABSTRACT

Osteoarthritis (OA) is the most common degenerative disease of the connective tissue of the human musculoskeletal system. Despite its widespread prevalence, there are many limitations in its diagnosis and treatment. OA diagnosis currently relies on the presence of clinical symptoms, sometimes accompanied by changes in joint X-rays or MRIs. Biomarkers help not only to diagnose early disease progression but also to understand the process of OA in many ways. In this article, we briefly summarize information on articular joints and joint tissues, the pathogenesis of OA and review the literature about biomarkers in the field of OA, specifically inflammatory cytokines/chemokines, proteins, miRNA, and metabolic biomarkers found in the blood, synovial fluid and in extracellular vesicles.

3.
Curr Issues Mol Biol ; 44(2): 578-596, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35723326

ABSTRACT

At present, there is no effective way to treat the consequences of spinal cord injury (SCI). SCI leads to the death of neural and glial cells and widespread neuroinflammation with persisting for several weeks after the injury. Mesenchymal stem cells (MSCs) therapy is one of the most promising approaches in the treatment of this injury. The aim of this study was to characterize the expression profile of multiple cytokines, chemokines, growth factors, and so-called neuromarkers in the serum of an SCI patient treated with autologous bone marrow-derived MSCs (BM-MSCs). SCI resulted in a significant increase in the levels of neuromarkers and proteins involved in the inflammatory process. BM-MSCs administration resulted in significant changes in the levels of neuromarkers (S100, GFAP, and pNF-H) as well as changes in the expression of proteins and growth factors involved in the inflammatory response following SCI in the serum of a patient with traumatic SCI. Our preliminary results encouraged that BM-MSCs with their neuroprotective and immunomodulatory effects could affect the repair process after injury.

4.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34948379

ABSTRACT

Mesenchymal stem cells (MSCs) are of great interest to scientists due to their application in cell therapy of many diseases, as well as regenerative medicine and tissue engineering. Recently, there has been growing evidence surrounding the research based on extracellular vesicles (EVs), especially small EVs (sEVs)/exosomes derived from MSCs. EVs/exosomes can be secreted by almost all cell types and various types of EVs show multiple functions. In addition, MSCs-derived exosomes have similar characteristics and biological activities to MSCs and their therapeutic applications are considered as a safe strategy in cell-free therapy. The aim of this study was the characterization of MSCs isolated from the chorion (CHo-MSCs) of human full-term placenta, as well as the isolation and analysis of small EVs obtained from these cells. Accordingly, in this study, the ability of small EVs' uptake is indicated by synovial fibroblasts, osteoblasts and periosteum-derived MSCs. Improvement in the understanding of the structure, characteristics, mechanism of action and potential application of MSCs-derived small EVs can provide new insight into improved therapeutic strategies.


Subject(s)
Chorion/cytology , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/cytology , Cell Communication , Cell- and Tissue-Based Therapy , Cells, Cultured , Chorion/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL