Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372993

ABSTRACT

The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is higher in men than in women of reproductive age, and postmenopausal women are especially susceptible to developing the disease. AIM: we evaluated if female apolipoprotein E (ApoE) KO mice were protected against Western-diet (WD)-induced NASH. METHODS: Female ovariectomized (OVX) ApoE KO mice or sham-operated (SHAM) mice were fed either a WD or a regular chow (RC) for 7 weeks. Additionally, OVX mice fed a WD were treated with either estradiol (OVX + E2) or vehicle (OVX). RESULTS: Whole-body fat, plasma glucose, and plasma insulin were increased and associated with increased glucose intolerance in OVX mice fed a WD (OVX + WD). Plasma and hepatic triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) hepatic enzymes were also increased in the plasma of OVX + WD group, which was associated with hepatic fibrosis and inflammation. Estradiol replacement in OVX mice reduced body weight, body fat, glycemia, and plasma insulin associated with reduced glucose intolerance. Treatment also reduced hepatic triglycerides, ALT, AST, hepatic fibrosis, and inflammation in OVX mice. CONCLUSIONS: These data support the hypothesis that estradiol protects OVX ApoE KO mice from NASH and glucose intolerance.


Subject(s)
Glucose Intolerance , Insulins , Non-alcoholic Fatty Liver Disease , Animals , Female , Mice , Apolipoproteins E/genetics , Diet , Estradiol/pharmacology , Glucose , Glucose Intolerance/etiology , Glucose Intolerance/pathology , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Triglycerides
2.
Biomed Pharmacother ; 155: 113660, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36095960

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.


Subject(s)
Insulin Resistance , Kombucha Tea , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Citrate (si)-Synthase/metabolism , Farnesol/metabolism , Farnesol/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Liver , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Insulin/metabolism , Glucose/metabolism , Bile Acids and Salts/metabolism , Carbohydrates/pharmacology , Serine/metabolism , Serine/pharmacology , Phosphofructokinase-1/metabolism , GTP-Binding Proteins/metabolism , Collagen/metabolism , Mice, Inbred C57BL , Diet, High-Fat
3.
Proc Natl Acad Sci U S A ; 114(5): 1189-1194, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096339

ABSTRACT

Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.


Subject(s)
Astrocytes/metabolism , Body Composition/physiology , Brain/metabolism , Cholesterol/metabolism , Energy Metabolism/physiology , Sterol Regulatory Element Binding Protein 2/deficiency , Animals , Body Composition/genetics , Cell Line, Tumor , Energy Metabolism/genetics , Female , Gene Knockdown Techniques , Glioma/pathology , Glucose/metabolism , Hyperinsulinism/metabolism , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Nesting Behavior , Neurites/ultrastructure , Oxidation-Reduction , Rats , Rotarod Performance Test , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/physiology , Sterol Regulatory Element Binding Proteins/antagonists & inhibitors , Sterol Regulatory Element Binding Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 113(8): 2212-7, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26858428

ABSTRACT

Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Insulin Resistance/physiology , Muscle Strength/physiology , Muscle, Skeletal/pathology , Myostatin/antagonists & inhibitors , Sarcopenia/therapy , Aging/immunology , Aging/pathology , Aging/physiology , Animals , Disease Models, Animal , Energy Metabolism , Humans , Male , Mice , Myostatin/immunology , Myostatin/physiology , Sarcopenia/pathology , Sarcopenia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...