Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Crit Care ; 27(1): 212, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37259125

ABSTRACT

INTRODUCTION: Patients with community-acquired pneumonia (CAP) admitted to the intensive care unit (ICU) have high mortality rates during the acute infection and up to ten years thereafter. Recommendations from international CAP guidelines include macrolide-based treatment. However, there is no data on the long-term outcomes of this recommendation. Therefore, we aimed to determine the impact of macrolide-based therapy on long-term mortality in this population. METHODS: Registered patients in the MIMIC-IV database 16 years or older and admitted to the ICU due to CAP were included. Multivariate analysis, targeted maximum likelihood estimation (TMLE) to simulate a randomised controlled trial, and survival analyses were conducted to test the effect of macrolide-based treatment on mortality six-month (6 m) and twelve-month (12 m) after hospital admission. A sensitivity analysis was performed excluding patients with Pseudomonas aeruginosa or MRSA pneumonia to control for Healthcare-Associated Pneumonia (HCAP). RESULTS: 3775 patients were included, and 1154 were treated with a macrolide-based treatment. The non-macrolide-based group had worse long-term clinical outcomes, represented by 6 m [31.5 (363/1154) vs 39.5 (1035/2621), p < 0.001] and 12 m mortality [39.0 (450/1154) vs 45.7 (1198/2621), p < 0.001]. The main risk factors associated with long-term mortality were Charlson comorbidity index, SAPS II, septic shock, and respiratory failure. Macrolide-based treatment reduced the risk of dying at 6 m [HR (95% CI) 0.69 (0.60, 0.78), p < 0.001] and 12 m [0.72 (0.64, 0.81), p < 0.001]. After TMLE, the protective effect continued with an additive effect estimate of - 0.069. CONCLUSION: Macrolide-based treatment reduced the hazard risk of long-term mortality by almost one-third. This effect remains after simulating an RCT with TMLE and the sensitivity analysis for the HCAP classification.


Subject(s)
Anti-Bacterial Agents , Community-Acquired Infections , Macrolides , Pneumonia , Humans , Macrolides/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/mortality , Pneumonia/drug therapy , Pneumonia/mortality , Anti-Bacterial Agents/therapeutic use , Intensive Care Units , Survival Analysis , Hospital Mortality , Hospitalization , Male , Female , Middle Aged , Aged , Aged, 80 and over , Treatment Outcome
2.
Sci Rep ; 13(1): 6553, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085552

ABSTRACT

Around one-third of patients diagnosed with COVID-19 develop a severe illness that requires admission to the Intensive Care Unit (ICU). In clinical practice, clinicians have learned that patients admitted to the ICU due to severe COVID-19 frequently develop ventilator-associated lower respiratory tract infections (VA-LRTI). This study aims to describe the clinical characteristics, the factors associated with VA-LRTI, and its impact on clinical outcomes in patients with severe COVID-19. This was a multicentre, observational cohort study conducted in ten countries in Latin America and Europe. We included patients with confirmed rtPCR for SARS-CoV-2 requiring ICU admission and endotracheal intubation. Only patients with a microbiological and clinical diagnosis of VA-LRTI were included. Multivariate Logistic regression analyses and Random Forest were conducted to determine the risk factors for VA-LRTI and its clinical impact in patients with severe COVID-19. In our study cohort of 3287 patients, VA-LRTI was diagnosed in 28.8% [948/3287]. The cumulative incidence of ventilator-associated pneumonia (VAP) was 18.6% [610/3287], followed by ventilator-associated tracheobronchitis (VAT) 10.3% [338/3287]. A total of 1252 bacteria species were isolated. The most frequently isolated pathogens were Pseudomonas aeruginosa (21.2% [266/1252]), followed by Klebsiella pneumoniae (19.1% [239/1252]) and Staphylococcus aureus (15.5% [194/1,252]). The factors independently associated with the development of VA-LRTI were prolonged stay under invasive mechanical ventilation, AKI during ICU stay, and the number of comorbidities. Regarding the clinical impact of VA-LRTI, patients with VAP had an increased risk of hospital mortality (OR [95% CI] of 1.81 [1.40-2.34]), while VAT was not associated with increased hospital mortality (OR [95% CI] of 1.34 [0.98-1.83]). VA-LRTI, often with difficult-to-treat bacteria, is frequent in patients admitted to the ICU due to severe COVID-19 and is associated with worse clinical outcomes, including higher mortality. Identifying risk factors for VA-LRTI might allow the early patient diagnosis to improve clinical outcomes.Trial registration: This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.


Subject(s)
Bronchitis , COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Humans , Prospective Studies , COVID-19/complications , SARS-CoV-2 , Respiration, Artificial/adverse effects , Respiratory Tract Infections/complications , Pneumonia, Ventilator-Associated/drug therapy , Bronchitis/drug therapy , Ventilators, Mechanical/adverse effects , Risk Factors , Intensive Care Units
SELECTION OF CITATIONS
SEARCH DETAIL