Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Sci Rep ; 14(1): 11834, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783150

ABSTRACT

Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.


Subject(s)
Cell Differentiation , Cell Survival , Stem Cells , Tardigrada , Animals , Humans , Cell Survival/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Tardigrada/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Adipogenesis , Cells, Cultured , Stress, Physiological
2.
PLoS One ; 18(11): e0293609, 2023.
Article in English | MEDLINE | ID: mdl-37910543

ABSTRACT

3D cell culture models have gained popularity in recent years as an alternative to animal and 2D cell culture models for pharmaceutical testing and disease modeling. Polydimethylsiloxane (PDMS) is a cost-effective and accessible molding material for 3D cultures; however, routine PDMS molding may not be appropriate for extended culture of contractile and metabolically active tissues. Failures can include loss of culture adhesion to the PDMS mold and limited culture surfaces for nutrient and waste diffusion. In this study, we evaluated PDMS molding materials and surface treatments for highly contractile and metabolically active 3D cell cultures. PDMS functionalized with polydopamine allowed for extended culture duration (14.8 ± 3.97 days) when compared to polyethylamine/glutaraldehyde functionalization (6.94 ± 2.74 days); Additionally, porous PDMS extended culture duration (16.7 ± 3.51 days) compared to smooth PDMS (6.33 ± 2.05 days) after treatment with TGF-ß2 to increase culture contraction. Porous PDMS additionally allowed for large (13 mm tall × 8 mm diameter) constructs to be fed by diffusion through the mold, resulting in increased cell density (0.0210 ± 0.0049 mean nuclear fraction) compared to controls (0.0045 ± 0.0016 mean nuclear fraction). As a practical demonstration of the flexibility of porous PDMS, we engineered a vascular bioartificial muscle model (VBAM) and demonstrated extended culture of VBAMs anchored with porous PDMS posts. Using this model, we assessed the effect of feeding frequency on VBAM cellularity. Feeding 3×/week significantly increased nuclear fraction at multiple tissue depths relative to 2×/day. VBAM maturation was similarly improved in 3×/week feeding as measured by nuclear alignment (23.49° ± 3.644) and nuclear aspect ratio (2.274 ± 0.0643) relative to 2x/day (35.93° ± 2.942) and (1.371 ± 0.1127), respectively. The described techniques are designed to be simple and easy to implement with minimal training or expense, improving access to dense and/or metabolically active 3D cell culture models.


Subject(s)
Cell Culture Techniques , Dimethylpolysiloxanes , Animals , Cell Culture Techniques/methods , Muscles
3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108233

ABSTRACT

The role of pulmonary free fatty acid receptor 4 (FFAR4) is not fully elucidated and we aimed to clarify the impact of FFAR4 on the pulmonary immune response and return to homeostasis. We employed a known high-risk human pulmonary immunogenic exposure to extracts of dust from swine confinement facilities (DE). WT and Ffar4-null mice were repetitively exposed to DE via intranasal instillation and supplemented with docosahexaenoic acid (DHA) by oral gavage. We sought to understand if previous findings of DHA-mediated attenuation of the DE-induced inflammatory response are FFAR4-dependent. We identified that DHA mediates anti-inflammatory effects independent of FFAR4 expression, and that DE-exposed mice lacking FFAR4 had reduced immune cells in the airways, epithelial dysplasia, and impaired pulmonary barrier integrity. Analysis of transcripts using an immunology gene expression panel revealed a role for FFAR4 in lungs related to innate immune initiation of inflammation, cytoprotection, and immune cell migration. Ultimately, the presence of FFAR4 in the lung may regulate cell survival and repair following immune injury, suggestive of potential therapeutic directions for pulmonary disease.


Subject(s)
Docosahexaenoic Acids , Receptors, G-Protein-Coupled , Humans , Animals , Mice , Swine , Docosahexaenoic Acids/pharmacology , Ligands , Receptors, G-Protein-Coupled/metabolism , Lung/metabolism , Dietary Supplements , Inflammation , Mice, Knockout
4.
Front Vet Sci ; 10: 1293199, 2023.
Article in English | MEDLINE | ID: mdl-38162475

ABSTRACT

Introduction: Equine recurrent uveitis (ERU), an immune mediated disease characterized by repeated episodes of intra-ocular inflammation, affects 25% of horses in the USA and is the most common cause of glaucoma, cataracts, and blindness. Mesenchymal stromal cells (MSCs) have immunomodulatory properties, which are upregulated by preconditioning with toll-like receptor agonists. The objective was to evaluate safety and migration of TLR-3 agonist polyinosinic, polycytidylic acid (pIC)-activated MSCs injected subconjunctivally in healthy horses prior to clinical application in horses with ERU. We hypothesized that activated allogeneic MSCs injected subconjunctivally would not induce ocular or systemic inflammation and would remain in the conjunctiva for >14 days. Methods: Bulbar subconjunctiva of two horses was injected with 10 × 106 pIC-activated (10 µg/mL, 2 h) GFP-labeled MSCs from one donor three times at two-week intervals. Vehicle (saline) control was injected in the contralateral conjunctiva. Horses received physical and ophthalmic exams [slit lamp biomicroscopy, rebound tonometry, fundic examination, and semiquantitative preclinical ocular toxicology scoring (SPOTS)] every 1-3 days. Systemic inflammation was assessed via CBC, fibrinogen, and serum amyloid A (SAA). Horses were euthanized 14 days following final injection. Full necropsy and histopathology were performed to examine ocular tissues and 36 systemic organs for MSC presence via IVIS Spectrum. Anti-GFP immunohistochemistry was performed on ocular tissues. Results: No change in physical examinations was noted. Bloodwork revealed fibrinogen 100-300 mg/dL (ref 100-400) and SAA 0-25 µg/mL (ref 0-20). Ocular effects of the subjconjucntival injection were similar between MSC and control eyes on SPOTS grading system, with conjunctival hypermia, chemosis and ocular discharge noted bilaterally, which improved without intervention within 14 days. All other ocular parameters were unaffected throughout the study. Necropsy and histopathology revealed no evidence of systemic inflammation. Ocular histopathology was similar between MSC and control eyes. Fluorescent imaging analysis did not locate MSCs. Immunohistochemistry did not identify intact MSCs in the conjunctiva, but GFP-labeled cellular components were present in conjunctival phagocytic cells. Discussion: Allogeneic pIC-activated conjunctival MSC injections were well tolerated. GFP-labeled tracking identified MSC components phagocytosed by immune cells subconjunctivally. This preliminary safety and tracking information is critical towards advancing immune conditioned cellular therapies to clinical trials in horses.

5.
Biomolecules ; 12(12)2022 12 07.
Article in English | MEDLINE | ID: mdl-36551256

ABSTRACT

Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an "adipose-vascular" HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.


Subject(s)
Skin Aging , Skin Diseases , Animals , Humans , Subcutaneous Tissue , Skin , Fibroblasts
6.
Aging (Albany NY) ; 14(22): 9338-9383, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36435511

ABSTRACT

Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.


Subject(s)
Skin , Tissue Engineering
7.
Nat Commun ; 13(1): 5060, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030280

ABSTRACT

Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.


Subject(s)
Vestibule, Labyrinth , Zebrafish , Animals , Eye Movements , Gravity Sensing , Larva
8.
J Surg Case Rep ; 2022(3): rjac070, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280052

ABSTRACT

Peutz-Jeghers syndrome (PJS) is an autosomal dominant mutation of the STK11/LKB1 gene on chromosome 19 often characterized by mucocutaneous pigmentation, hamartomatous polyps, anemia, gastrointestinal bleeding and intussusception. We present the case of a 21-year-old female with no pertinent family history who received the diagnosis of PJS after presenting to the hospital with two episodes intussusception. Patients with PJS have an increased lifetime risk of developing stomach, small bowel, colon, pancreatic, breast, cervical, uterus and testicular cancer requiring religious surveillance at an early age.

9.
Mol Ther Oncolytics ; 24: 864-872, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35317522

ABSTRACT

Pancreatic cancer resistance to immunotherapies is partly due to deficits in tumor-infiltrating immune cells and stromal density. Combination therapies that modify stroma and recruit immune cells are needed. Vitamin D analogs such as calcipotriol (Cal) decrease fibrosis in pancreas stroma, thus allowing increased chemotherapy delivery. OVs infect, replicate in, and kill cancer cells and recruit immune cells to immunodeficient microenvironments. We investigated whether stromal modification with Cal would enhance oncolytic viroimmunotherapy using recombinant orthopoxvirus, CF33. We assessed effect of Cal on CF33 replication using pancreas ductal adenocarcinoma (PDAC) cell lines and in vivo flank orthotopic models. Proliferation assays showed that Cal did not alter viral replication. Less replication was seen in cell lines whose division was slowed by Cal, but this appeared proportional to cell proliferation. Three-dimensional in vitro models demonstrated decreased myofibroblast integrity after Cal treatment. Cal increased vascular lumen size and immune cell infiltration in subcutaneous models of PDAC and increased viral delivery and replication. Cal plus serial OV dosing in the syngeneic Pan02 model caused more significant tumor abrogation than other treatments. Cal-treated tumors had less dense fibrosis, enhanced immune cell infiltration, and decreased T cell exhaustion. Calcipotriol is a possible adjunct for CF33-based oncolytic viroimmunotherapy against PDAC.

10.
Biotechniques ; 72(5): 194-200, 2022 05.
Article in English | MEDLINE | ID: mdl-35289681

ABSTRACT

Human skin equivalents (HSEs) are in vitro models of human skin. They are used to study skin development, diseases, wound healing and toxicity. The gold standard of analysis is histological sectioning, which both limits three-dimensional assessment of the tissue and prevents live culture monitoring. Optical coherence tomography (OCT) has previously been used to visualize in vivo human skin and in vitro models. OCT is noninvasive and enables real-time volumetric analysis of HSEs. The techniques presented here demonstrate the use of OCT imaging to track HSE epidermal thickness over 8 weeks of culture and improve upon previous processing of OCT images by presenting algorithms that automatically quantify epidermal thickness. Through volumetric automated analysis, HSE morphology can be accurately tracked in real time.


Subject(s)
Epidermis , Tomography, Optical Coherence , Algorithms , Epidermis/anatomy & histology , Epidermis/pathology , Humans , Skin/diagnostic imaging , Tomography, Optical Coherence/methods , Wound Healing
11.
Sci Rep ; 11(1): 12263, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112900

ABSTRACT

The COVID-19 crisis has taken a significant toll on human life and the global economy since its start in early 2020. Healthcare professionals have been particularly vulnerable because of the unprecedented shortage of Facepiece Respirators (FPRs), which act as fundamental tools to protect the medical staff treating the coronavirus patients. In addition, many FPRs are designed to be disposable single-use devices, creating an issue related to the generation of large quantities of non-biodegradable waste. In this contribution, we describe a plasma-based decontamination technique designed to circumvent the shortages of FPRs and alleviate the environmental problems posed by waste generation. The system utilizes a Dielectric Barrier Discharge (DBD) to generate ozone and feed it through the fibers of the FPRs. The flow-through configuration is different than canonical ozone-based sterilization methods, in which the equipment is placed in a sealed ozone-containing enclosure without any flow through the mask polymer fibers. We demonstrate the rapid decontamination of surgical masks using Escherichia coli (E. coli) and Vesicular Stomatitis Virus (VSV) as model pathogens, with the flow-through configuration providing a drastic reduction in sterilization time compared to the canonical approach. We also demonstrate that there is no deterioration in mask structure or filtration efficiency resulting from sterilization. Finally, we show that this decontamination approach can be implemented using readily available tools, such as a plastic box, a glass tube, few 3D printed components, and the high-voltage power supply from a plasma globe toy. The prototype assembled for this study is portable and affordable, with effectiveness comparable to that of larger and more expensive equipment.

12.
J Vis Exp ; (168)2021 02 12.
Article in English | MEDLINE | ID: mdl-33645584

ABSTRACT

Human skin equivalents (HSEs) are tissue engineered constructs that model epidermal and dermal components of human skin. These models have been used to study skin development, wound healing, and grafting techniques. Many HSEs continue to lack vasculature and are additionally analyzed through post-culture histological sectioning which limits volumetric assessment of the structure. Presented here is a straightforward protocol utilizing accessible materials to generate vascularized human skin equivalents (VHSE); further described are volumetric imaging and quantification techniques of these constructs. Briefly, VHSEs are constructed in 12 well culture inserts in which dermal and epidermal cells are seeded into rat tail collagen type I gel. The dermal compartment is made up of fibroblast and endothelial cells dispersed throughout collagen gel. The epidermal compartment is made up of keratinocytes (skin epithelial cells) that differentiate at the air-liquid interface. Importantly, these methods are customizable based on needs of the researcher, with results demonstrating VHSE generation with two different fibroblast cell types: human dermal fibroblasts (hDF) and human lung fibroblasts (IMR90s). VHSEs were developed, imaged through confocal microscopy, and volumetrically analyzed using computational software at 4- and 8-week timepoints. An optimized process to fix, stain, image, and clear VHSEs for volumetric examination is described. This comprehensive model, imaging, and analysis techniques are readily customizable to the specific research needs of individual labs with or without prior HSE experience.


Subject(s)
Neovascularization, Physiologic , Skin, Artificial , Skin/blood supply , Tissue Engineering/methods , Animals , Biomarkers/metabolism , Cells, Cultured , Collagen/metabolism , Dermis/metabolism , Epidermis/metabolism , Fluorescent Antibody Technique , Humans , Imaging, Three-Dimensional , Optical Imaging , Permeability , Rats , Staining and Labeling , Suspensions
14.
Neuron ; 108(4): 748-762.e4, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32937099

ABSTRACT

As sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict that complexity arises via convergent inputs from neurons with diverse response properties, in most vertebrate systems, convergence has only been inferred rather than tested directly. Here, we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. Strong, sparse synaptic inputs can be distinguished by their amplitudes, permitting analysis of afferent convergence in vivo. An independent approach, serial-section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Together, these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.


Subject(s)
Neurons, Afferent/physiology , Otolithic Membrane/physiology , Vestibular Nuclei/physiology , Animals , Electric Stimulation , Evoked Potentials, Somatosensory/physiology , Gene Knock-In Techniques , Microscopy, Electron , Neurons/physiology , Neurons/ultrastructure , Neurons, Afferent/ultrastructure , Vestibular Nuclei/ultrastructure , Zebrafish
15.
Metabolism ; 108: 154257, 2020 07.
Article in English | MEDLINE | ID: mdl-32370945

ABSTRACT

BACKGROUND: Protein degradation is an energy-dependent process, requiring ATP at multiple steps. However, reports conflict as to the relationship between intracellular energetics and the rate of proteasome-mediated protein degradation. METHODS: To determine whether the concentration of the adenine nucleotide pool (ATP + ADP + AMP) affects protein degradation in muscle cells, we overexpressed an AMP degrading enzyme, AMP deaminase 3 (AMPD3), via adenovirus in C2C12 myotubes. RESULTS: Overexpression of AMPD3 resulted in a dose- and time-dependent reduction of total adenine nucleotides (ATP, ADP and AMP) without increasing the ADP/ATP or AMP/ATP ratios. In agreement, the reduction of total adenine nucleotide concentration did not result in increased Thr172 phosphorylation of AMP-activated protein kinase (AMPK), a common indicator of intracellular energetic state. Furthermore, LC3 protein accumulation and ULK1 (Ser 555) phosphorylation were not induced. However, overall protein degradation and ubiquitin-dependent proteolysis were slowed by overexpression of AMPD3, despite unchanged content of several proteasome subunit proteins and proteasome activity in vitro under standard conditions. CONCLUSIONS: Altogether, these findings indicate that a physiologically relevant decrease in ATP content, without a concomitant increase in ADP or AMP, is sufficient to decrease the rate of protein degradation and activity of the ubiquitin-proteasome system in muscle cells. This suggests that adenine nucleotide degrading enzymes, such as AMPD3, may be a viable target to control muscle protein degradation and perhaps muscle mass.


Subject(s)
AMP Deaminase/metabolism , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , AMP-Activated Protein Kinases/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Animals , Cells, Cultured , Mice , Muscle Fibers, Skeletal/metabolism , Phosphorylation/physiology , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/metabolism , Proteolysis , Ubiquitin/metabolism
16.
MRS Commun ; 10(4): 587-593, 2020.
Article in English | MEDLINE | ID: mdl-33398238

ABSTRACT

Barium titanate (BTO) is a ferroelectric perovskite with potential in energy storage applications. Previous research suggests that BTO dielectric constant increases as nanoparticle diameter decreases. This report recounts an investigation of this relationship. Injection-molded nanocomposites of 5 vol% BTO nanoparticles incorporated in a low-density polyethylene matrix were fabricated and measured. Finite-element analysis was used to model nanocomposites of all BTO sizes and the results were compared with experimental data. Both indicated a negligible relationship between BTO diameter and dielectric constant at 5 vol%. However, a path for fabricating and testing composites of 30 vol% and higher is presented here. SUPPLEMENTARY MATERIAL: The supplementary material for this article can be found at 10.1557/mrc.2020.69.

17.
MethodsX ; 6: 1907-1918, 2019.
Article in English | MEDLINE | ID: mdl-31667089

ABSTRACT

One of the largest issues facing the field of tissue engineering is scaling due to tissue necrosis as a result of a lack of vascularization. We have developed an accessible method for generating large scale vascular networks of arbitrary geometries through the self-assembly of endothelial cells in a collagen gel, similar to vasculogenesis that occurs in the developing embryo. This system can be applied to a wide range of collagen concentrations and seeding densities, resulting in networks of varying phenotypes, lending itself to the recapitulation of vascular networks that mimic those found across different tissues. Methods are thus described for the generation and imaging of these self-assembled three-dimensional networks in addition to image processing methods for rigorous quantitative measurement of various morphological parameters. There are several advantages to the system described herein. •Varied molding procedures allow for irregular geometries, similar to those that would be required for tissue grafts.•Robust network formation translates into centimeter scale constructs.•Whereas similar processes suffer from a high degree of variability and inconsistent characterization, our method employs image analysis techniques to stringently characterize each network based on several objective characteristics.

18.
Biomaterials ; 189: 37-47, 2019 01.
Article in English | MEDLINE | ID: mdl-30384127

ABSTRACT

One of the largest challenges facing the field of tissue engineering is the incorporation of a functional vasculature, allowing effective nourishment of graft tissue beyond diffusion length scales. Here, we demonstrate a methodology for inducing the robust self-assembly of endothelial cells into stable three-dimensional perfusable networks on millimeter and centimeter length scales. Utilizing broadly accessible cell strains and reagents, we have rigorously tested a state space of cell densities (0.5-2.0 × 106 cell/mL) and collagen gel densities (2-6 mg/mL) that result in robust vascular network formation. Further, over the range of culture conditions with which we observed robust network formation, we advanced image processing algorithms and quantitative metrics to assess network connectivity, coverage, tortuosity, lumenization, and vessel diameter. These data demonstrate that decreasing collagen density produced more connected networks with higher coverage. Finally, we demonstrated that this methodology results in the formation of perfusable networks, is extensible to arbitrary geometries and centimeter scales, and results in networks that remain stable for 21 days without the need for the co-culture of supporting cells. Given the robustness and accessibility, this system is ideal for studies of tissue-scale biology, as well as future studies on the formation and remodeling of larger engineered graft tissues.


Subject(s)
Collagen/chemistry , Endothelial Cells/cytology , Neovascularization, Physiologic , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Rats , Tissue Engineering/methods
19.
Article in English | MEDLINE | ID: mdl-30568634

ABSTRACT

Background: The process of testicular descent requires androgen and insulin-like 3, hormones secreted by fetal Leydig cells. Knowledge concerning distinct and common functions of these hormones in regulating development of the fetal gubernaculum remains limited and/or conflicting. The current studies were designed to better define characteristics of androgen receptor (AR) expression, function and regulation, as well as the biomechanical properties of normal and cryptorchid gubernaculum during fetal development. Methods: We studied fetal gubernacula from Long Evans outbred (LE/wt) rats and an inbred (LE/orl) strain with an inherited form of cryptorchidism associated with an AR signaling defect. Gubernacular cells or whole organs obtained from LE/wt and LE/orl fetal gubernacula underwent AR immunostaining and quantitative image analysis. The effects of dihydrotestosterone (DHT) on AR expression, muscle fiber morphology, hyaluronan (HA) levels and glycosaminoglycan (GAG) content were measured in LE/wt gubernacula. Finally, the spatial mechanics of freshly harvested LE/wt and LE/orl fetal gubernacula were compared using micropipette aspiration. Results: AR is expressed in the nucleus of mesenchymal core, tip and cord cells of the embryonic (E) day 17 and 21 fetal gubernaculum, and is enhanced by DHT in primary cultures of gubernacular mesenchymal cells. Enhanced AR expression at the tip was observed in LE/wt but not LE/orl gubernacula. In in vitro studies of whole mount fetal gubernaculum, DHT did not alter muscle fiber morphology, HA content or GAG production. Progressive swelling with reduced cellular density of the LE/wt gubernaculum at E19-21 was associated with increased central stiffness in LE/wt but not in LE/orl fetuses. Conclusions: These data confirm nuclear AR expression in gubernacular mesenchyme with distal enhancement at the tip/cord region in LE/wt but not LE/orl rat fetuses. DHT enhanced cellular AR expression but had no major effects on muscle morphology or matrix composition in the rat fetal gubernaculum in vitro. Regional increased stiffness and decreased cell density between E19 and E21 were observed in LE/wt but not LE/orl fetal gubernacula. Developmental differences in cell-specific AR expression in LE/orl fetal gubernacula may contribute to the dysmorphism and aberrant function that underlies cryptorchidism susceptibility in this strain.

20.
Oncotarget ; 9(43): 27000-27015, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29930746

ABSTRACT

Resistance to chemotherapy substantially hinders successful glioblastoma (GBM) treatment, contributing to an almost 100% mortality rate. Resistance to the frontline chemotherapy, temozolomide (TMZ), arises from numerous signaling pathways that are deregulated in GBM, including Hedgehog (Hh) signaling. Here, we investigate suppression of Hh signaling as an adjuvant to TMZ using U87-MG and T98G cell lines as in vitro models of GBM. We found that silencing GLI1 with siRNA reduces cell metabolic activity by up to 30% in combination with TMZ and reduces multidrug efflux activity by 2.5-fold. Additionally, pharmacological GLI inhibition modulates nuclear p53 levels and decreases MGMT expression in combination with TMZ. While we surprisingly found that silencing GLI1 does not induce apoptosis in the absence of TMZ co-treatment, we discovered silencing GLI1 without TMZ co-treatment induces senescence as evidenced by a significant 2.3-fold increase in senescence associated ß-galactosidase staining, and this occurs in a loss of PTEN-dependent manner. Finally, we show that GLI inhibition increases apoptosis in glioma stem-like cells by up to 6.8-fold in combination with TMZ, and this reduces the size and number of neurospheres grown from glioma stem-like cells. In aggregate, our data warrant the continued investigation of Hh pathway inhibitors as adjuvants to TMZ chemotherapy and highlight the importance of identifying signaling pathways that determine whether co-treatment will be successful.

SELECTION OF CITATIONS
SEARCH DETAIL
...