Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(4): 042701, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35148128

ABSTRACT

We present the first direct measurement of an astrophysical reaction using a radioactive beam of isomeric nuclei. In particular, we have measured the strength of the key 447-keV resonance in the ^{26m}Al(p,γ)^{27}Si reaction to be 432_{-226}^{+146} meV and find that this resonance dominates the thermally averaged reaction rate for temperatures between 0.3 and 2.5 GK. This work represents a critical development in resolving one of the longest standing issues in nuclear astrophysics research, relating to the measurement of proton capture reactions on excited quantum levels, and offers unique insight into the destruction of isomeric ^{26}Al in astrophysical plasmas.

2.
Phys Rev Lett ; 115(6): 062701, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296114

ABSTRACT

In Wolf-Rayet and asymptotic giant branch (AGB) stars, the (26g)Al(p,γ)(27)Si reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus (26)Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the (26g)Al(d,p)(27)Al reaction as a method for constraining the strengths of key astrophysical resonances in the (26g)Al(p,γ)(27)Si reaction. In particular, the results indicate that the resonance at E(r)=127 keV in (27)Si determines the entire (26g)Al(p,γ)(27)Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars.

3.
Phys Rev Lett ; 110(3): 032502, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23373915

ABSTRACT

The (18)F(p,α)(15)O reaction rate is crucial for constraining model predictions of the γ-ray observable radioisotope (18)F produced in novae. The determination of this rate is challenging due to particular features of the level scheme of the compound nucleus, (19)Ne, which result in interference effects potentially playing a significant role. The dominant uncertainty in this rate arises from interference between J(π)=3/2(+) states near the proton threshold (S(p)=6.411 MeV) and a broad J(π)=3/2(+) state at 665 keV above threshold. This unknown interference term results in up to a factor of 40 uncertainty in the astrophysical S-factor at nova temperatures. Here we report a new measurement of states in this energy region using the (19)F((3)He,t)(19)Ne reaction. In stark contrast to previous assumptions we find at least 3 resonances between the proton threshold and E(cm)=50 keV, all with different angular distributions. None of these are consistent with J(π)=3/2(+) angular distributions. We find that the main uncertainty now arises from the unknown proton width of the 48 keV resonance, not from possible interference effects. Hydrodynamic nova model calculations performed indicate that this unknown width affects (18)F production by at least a factor of two in the model considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...