Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 46(18): 4570-4573, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525049

ABSTRACT

A proposal for additional temporal compression and peak power enhancement of intense (>TW/cm2) femtosecond laser pulses using two thin plane-parallel plates is presented. The first ultrathin plate (order of mm) induces spectral broadening due to self-phase modulation, and the second ultrathin plate (order of micron) corrects the spectral phase. The elimination of the negative dispersive multilayer coating from the scheme offers an improved laser-induced damage threshold for the post-compression process.

2.
Phys Rev Lett ; 111(5): 055004, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952413

ABSTRACT

Plasma media, by exciting Raman (electron) or Brillouin (ion) waves, have been used to transfer energy from moderately long, high-energy light pulses to short ones. Using multidimensional kinetic simulations, we define here the optimum window in which a Brillouin scheme can be exploited for amplification and compression of short laser pulses over short distances to very high power. We also show that shaping the plasma allows for increasing the efficiency of the process while minimizing other unwanted plasma processes. Moreover, we show that, contrary to what was traditionally thought (i.e., using Brillouin in gases for nanosecond pulse compression), this scheme is able to amplify pulses of extremely short duration.

3.
Phys Rev Lett ; 92(6): 063902, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14995239

ABSTRACT

Lasers that provide an energy encompassed in a focal volume of a few cubic wavelengths (lambda(3)) can create relativistic intensity with maximal gradients, using minimal energy. With particle-in-cell simulations we found, that single 200 attosecond pulses could be produced efficiently in a lambda(3) laser pulse reflection, via deflection and compression from the relativistic plasma mirror created by the pulse itself. An analytical model of coherent radiation from a charged layer confirms the pulse compression and is in good agreement with simulations. The novel technique is efficient (approximately 10%) and can produce single attosecond pulses from the millijoule to the joule level.

4.
Opt Lett ; 29(24): 2837-9, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15645797

ABSTRACT

We generated a record peak intensity of 0.7 x 10(22) W/cm2 by focusing a 45-TW laser beam with an f/0.6 off-axis paraboloid. The aberrations of the paraboloid and the low-energy reference laser beam were measured and corrected, and a focal spot size of 0.8 microm was achieved. It is shown that the peak intensity can be increased to 1.0 x 10(22) W/cm2 by correction of the wave front of a 45-TW beam relative to the reference beam. The phase and amplitude measurement provides for an efficient full characterization of the focal field.

5.
J Refract Surg ; 13(7): 653-8, 1997.
Article in English | MEDLINE | ID: mdl-9427203

ABSTRACT

BACKGROUND: We investigated the role of laser pulse width in determining fluence thresholds and efficiency for corneal photodisruption. METHODS: A laser system that delivers a wide range of pulse energies and pulse widths was used to produce ablations at pulse widths from 100 femtoseconds (fs) to 7 nanoseconds (ns). The laser-induced breakdown fluence threshold at each pulse width was determined by monitoring individual plasma emissions. Using multiple shots, the photodisruption threshold and cutting depth at each pulse width were determined histologically. RESULTS: Corneal breakdown thresholds decreased at a faster rate from 7 ns to approximately 10 picoseconds (ps), compared to further reductions in pulse width below 10 ps, where little variation was seen. Breakdown for pulse widths below 10 ps showed little intershot variability, resulting in highly reproducible fluence thresholds. Corneal tissue examined histologically showed similar fluence dependency. CONCLUSIONS: Corneal tissue photodisruption thresholds demonstrate pulse width dependence. At pulse widths less than 10 ps and with fluences near the breakdown threshold, ablations are maximally precise and efficient. These findings suggest optimal laser parameters for corneal surgery.


Subject(s)
Cornea/surgery , Laser Therapy/methods , Cornea/pathology , Humans , Reproducibility of Results
8.
Opt Lett ; 17(21): 1512, 1992 Nov 01.
Article in English | MEDLINE | ID: mdl-19798231
SELECTION OF CITATIONS
SEARCH DETAIL