Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Joint Res ; 5(2): 61-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26883967

ABSTRACT

OBJECTIVES: Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. METHODS: Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. RESULTS: The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). CONCLUSION: Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines.Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61-65. doi: 10.1302/2046-3758.52.2000484.

2.
J Hand Surg Eur Vol ; 39(6): 637-41, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23735809

ABSTRACT

The UK National Patient Safety Agency issued a rapid response report in 2009 following reports of complications related to digital tourniquet use and inadvertent retention. In their guidance, they recommend the use of CE marked digital tourniquets and advise against the use of surgical gloves. There are a number of different commercially available non-pneumatic digital tourniquets, but little clear data relating to their comparable physical properties, clinical efficacy or safety. The aim of this study was to investigate the variability of pressures exerted by non-pneumatic digital tourniquets. A Tekscan FlexiForce(®) force sensor was used to measure applied force and to calculate the surface pressures under: the Toe-niquet™; T-Ring™ and surgical glove 'roll down' tourniquets in finger models. The lowest mean pressures were produced by the larger glove sizes (size 8) (25 mmHg), while the highest pressures were produced by the Toe-niquet (1560 mmHg). There was a significant overall difference in pressures exerted under tourniquets when comparing tourniquet type (p<0.001) and finger size (p<0.001) with these techniques. It is difficult to anticipate and regulate pressures generated by non-pneumatic tourniquets. Safe limits for application time and surface pressures are difficult to define. Further work is required to model the pressure effects of commercially available digital tourniquets and to identify which are most effective but safe.


Subject(s)
Fingers/surgery , Toes/surgery , Tourniquets , Gloves, Surgical , Humans , Models, Anatomic , Pressure
3.
Bone Joint Res ; 1(11): 289-96, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23610660

ABSTRACT

OBJECTIVES: Small animal models of fracture repair primarily investigate indirect fracture healing via external callus formation. We present the first described rat model of direct fracture healing. METHODS: A rat tibial osteotomy was created and fixed with compression plating similar to that used in patients. The procedure was evaluated in 15 cadaver rats and then in vivo in ten Sprague-Dawley rats. Controls had osteotomies stabilised with a uniaxial external fixator that used the same surgical approach and relied on the same number and diameter of screw holes in bone. RESULTS: Fracture healing occurred without evidence of external callus on plain radiographs. At six weeks after fracture fixation, the mean stress at failure in a four-point bending test was 24.65 N/mm(2) (sd 6.15). Histology revealed 'cutting-cones' traversing the fracture site. In controls where a uniaxial external fixator was used, bone healing occurred via external callus formation. CONCLUSIONS: A simple, reproducible model of direct fracture healing in rat tibia that mimics clinical practice has been developed for use in future studies of direct fracture healing.

SELECTION OF CITATIONS
SEARCH DETAIL
...