Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 10(1): 1835, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015435

ABSTRACT

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.


Subject(s)
Albuminuria/etiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/blood , Gastrointestinal Microbiome/physiology , Sulfuric Acid Esters/metabolism , Adult , Aged , Aged, 80 and over , Albuminuria/blood , Albuminuria/drug therapy , Albuminuria/pathology , Animals , Animals, Genetically Modified , Cohort Studies , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/urine , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Dogs , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Madin Darby Canine Kidney Cells , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Middle Aged , Organic Anion Transporters/genetics , Podocytes/metabolism , Podocytes/pathology , Rats , Streptozocin/toxicity , Sulfuric Acid Esters/blood , Tyrosine Phenol-Lyase/antagonists & inhibitors , Tyrosine Phenol-Lyase/metabolism , Young Adult
2.
Am J Physiol Renal Physiol ; 315(4): F824-F833, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29167170

ABSTRACT

Accumulation of uremic toxins, which exert deleterious effects in chronic kidney disease, is influenced by the intestinal environment; the microbiota contributes to the production of representative uremic toxins, including p-cresyl sulfate and indoxyl sulfate. Canagliflozin is a sodium-glucose cotransporter (SGLT) 2 inhibitor, and it also exerts a modest inhibitory effect on SGLT1. The inhibition of intestinal SGLT1 can influence the gastrointestinal environment. We examined the effect of canagliflozin on the accumulation of uremic toxins in chronic kidney disease using adenine-induced renal failure mice. Two-week canagliflozin (10 mg/kg po) treatment did not influence the impaired renal function; however, it significantly reduced the plasma levels of p-cresyl sulfate and indoxyl sulfate in renal failure mice (a 75% and 26% reduction, respectively, compared with the vehicle group). Additionally, canagliflozin significantly increased cecal short-chain fatty acids in the mice, suggesting the promotion of bacterial carbohydrate fermentation in the intestine. Analysis of the cecal microbiota showed that canagliflozin significantly altered microbiota composition in the renal failure mice. These results indicate that canagliflozin exerts intestinal effects that reduce the accumulation of uremic toxins including p-cresyl sulfate. Reduction of accumulated uremic toxins by canagliflozin could provide a potential therapeutic option in chronic kidney disease.


Subject(s)
Canagliflozin/pharmacology , Gastrointestinal Microbiome/drug effects , Renal Insufficiency, Chronic/drug therapy , Toxins, Biological/blood , Animals , Disease Models, Animal , Gastrointestinal Tract/drug effects , Male , Mice, Inbred C57BL , Renal Insufficiency, Chronic/blood , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Toxins, Biological/pharmacology , Uremia/blood , Uremia/drug therapy
3.
Article in English | MEDLINE | ID: mdl-29024911

ABSTRACT

Column choice is crucial to the development of liquid chromatography/tandem mass spectrometry (LC-MS/MS) methods because analyte selectivity is dependent on the nature of the stationary phase. Recently, mixed-mode chromatography, which employs a combination of two or more stationary phases and solvent systems, has emerged as an alternative to multiple, complementary, single-column systems. This report describes the development and validation of a novel analytical method based on LC-MS/MS employing a reversed-phase/cation-exchange/anion-exchange tri-modal column (Scherzo SS-C18; Imtakt) for the simultaneous quantification of various uremic toxins (UTx), including creatinine, 1-methyladenosine, trimethylamine-N-oxide, indoxyl sulfate, p-cresyl sulfate, phenyl sulfate and 4-ethylphenyl sulfate. Stable isotope-labeled compounds were prepared as internal standards (ISs) for each analyte. Mobile phase optimization and appropriate gradient conditions resulted in satisfactory retention and peak resolution that could not have been attained with a single stationary phase LC system. The essential validation parameters, including intra- and inter-assay precision and accuracy, were adequate. The validated method was applied to measure serum levels of the aforementioned compounds in 19 patients with chronic kidney disease. This is the first report detailing the simultaneous quantification of these analytes using stable isotopes as ISs. Our results suggest that Scherzo SS-C18 columns will be considered breakthrough tools in the development of analytical methods for compounds that are difficult to quantify simultaneously in traditional LC systems.


Subject(s)
Chromatography, Ion Exchange/methods , Chromatography, Reverse-Phase/methods , Tandem Mass Spectrometry/methods , Toxins, Biological/blood , Humans , Linear Models , Renal Insufficiency, Chronic/blood , Reproducibility of Results , Sensitivity and Specificity
4.
Sci Rep ; 7(1): 1884, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28507324

ABSTRACT

Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-ß1 and TNF-α is desired as its therapeutic approach. Here we screened small molecules showing anti-TNF-α activity in the compound library of indole derivatives. 11 out of 41 indole derivatives inhibited the TNF-α effect. Among them, Mitochonic Acid 35 (MA-35), 5-(3, 5-dimethoxybenzyloxy)-3-indoleacetic acid, showed the potent effect. The anti-TNF-α activity was mediated by inhibiting IκB kinase phosphorylation, which attenuated the LPS/GaIN-induced hepatic inflammation in the mice. Additionally, MA-35 concurrently showed an anti-TGF-ß1 effect by inhibiting Smad3 phosphorylation, resulting in the downregulation of TGF-ß1-induced fibrotic gene expression. In unilateral ureter obstructed mouse kidney, which is a renal fibrosis model, MA-35 attenuated renal inflammation and fibrosis with the downregulation of inflammatory cytokines and fibrotic gene expressions. Furthermore, MA-35 inhibited TGF-ß1-induced H3K4me1 histone modification of the fibrotic gene promoter, leading to a decrease in the fibrotic gene expression. MA-35 affects multiple signaling pathways involved in the fibrosis and may recover epigenetic modification; therefore, it could possibly be a novel therapeutic drug for fibrosis.


Subject(s)
Indoles/pharmacology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Line , Disease Models, Animal , Extracellular Matrix/metabolism , Fibrosis , Hepatitis/drug therapy , Hepatitis/etiology , Hepatitis/metabolism , Hepatitis/pathology , Histones/metabolism , Humans , I-kappa B Kinase/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Lipopolysaccharides/adverse effects , Male , Methylation , Mice , Models, Biological , Phosphorylation/drug effects , Smad3 Protein/metabolism
5.
Kidney Int ; 92(3): 634-645, 2017 09.
Article in English | MEDLINE | ID: mdl-28396122

ABSTRACT

Gut microbiota is involved in the metabolism of uremic solutes. However, the precise influence of microbiota to the retention of uremic solutes in CKD is obscure. To clarify this, we compared adenine-induced renal failure and control mice under germ-free or specific pathogen-free (SPF) conditions, examining the metabolite profiles of plasma, feces, and urine using a capillary electrophoresis time-of-flight mass spectrometry-based approach. Mice with renal failure under germ-free conditions demonstrated significant changes in plasma metabolites. Among 183 detected solutes, plasma levels of 11 solutes, including major uremic toxins, were significantly lower in germ-free mice than in SPF mice with renal failure. These 11 solutes were considered microbiota-derived uremic solutes and included indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, cholate, hippurate, dimethylglycine, γ-guanidinobutyrate, glutarate, 2-hydroxypentanoate, trimethylamine N-oxide, and phenaceturate. Metabolome profiling showed that these solutes were classified into three groups depending on their origins: completely derived from microbiota (indoxyl sulfate, p-cresyl sulfate), derived from both host and microbiota (dimethylglycine), and derived from both microbiota and dietary components (trimethylamine N-oxide). Additionally, germ-free renal failure conditions resulted in the disappearance of colonic short-chain fatty acids, decreased utilization of intestinal amino acids, and more severe renal damage compared with SPF mice with renal failure. Microbiota-derived short-chain fatty acids and efficient amino acid utilization may have a renoprotective effect, and loss of these factors may exacerbate renal damage in germ-free mice with renal failure. Thus, microbiota contributes substantially to the production of harmful uremic solutes, but conversely, growth without microbiota has harmful effects on CKD progression.


Subject(s)
Acute Kidney Injury/metabolism , Gastrointestinal Microbiome/physiology , Metabolome , Renal Insufficiency, Chronic/metabolism , Toxins, Biological/blood , Uremia/metabolism , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/urine , Adenine/toxicity , Animals , Disease Models, Animal , Disease Progression , Electrophoresis, Capillary , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Humans , Kidney/pathology , Mass Spectrometry , Metabolomics/methods , Mice , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/urine , Specific Pathogen-Free Organisms , Toxins, Biological/urine , Uremia/blood , Uremia/urine
SELECTION OF CITATIONS
SEARCH DETAIL