Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 16(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38337665

ABSTRACT

Brain physiology and morphology are vulnerable to chronic stress, impacting cognitive performance and behavior. However, functional compounds found in food may alleviate these alterations. White quinoa (Chenopodium quinoa, Wild) seeds contain a high content of n-3 fatty acids, including alpha-linolenic acid. This study aimed to evaluate the potential neuroprotective role of a quinoa-based functional food (QFF) in rats. Prepubertal male Sprague-Dawley rats were fed with rat chow or QFF (50% rat chow + 50% dehydrated quinoa seeds) and exposed or not to restraint stress protocol (2 h/day; 15 days). Four experimental groups were used: Non-stressed (rat chow), Non-stressed + QFF, Stressed (rat chow) and Stressed + QFF. Weight gain, locomotor activity (open field), anxiety (elevated plus maze, light-dark box), spatial memory (Y-maze), and dendritic length in the hippocampus were measured in all animals. QFF intake did not influence anxiety-like behaviors, while the memory of stressed rats fed with QFF improved compared to those fed with rat chow. Additionally, QFF intake mitigated the stress-induced dendritic atrophy in pyramidal neurons located in the CA3 area of the hippocampus. The results suggest that a quinoa-supplemented diet could play a protective role in the memory of chronically stressed rats.


Subject(s)
Chenopodium quinoa , Rats , Animals , Male , Rats, Sprague-Dawley , Maze Learning , Dietary Supplements , Hippocampus/physiology , Stress, Psychological/psychology
2.
Cytoskeleton (Hoboken) ; 74(3): 143-158, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28164467

ABSTRACT

Neurons are highly differentiated cells responsible for the conduction and transmission of information in the nervous system. The proper function of a neuron relies on the compartmentalization of their intracellular domains. Differentiated neuroblastoma cells have been extensively used to study and understand the physiology and cell biology of neuronal cells. Here, we show that differentiation of N1E-115 neuroblastoma cells is more pronounced upon exposure of a chemical analog of cyclic AMP (cAMP), db-cAMP. We next analysed the expression of key microtubule-regulating proteins in differentiated cells and the expression and activation of key cAMP players such as EPAC, PKA and AKAP79/150. Most of the microtubule-promoting factors were up regulated during differentiation of N1E-115 cells, while microtubule-destabilizing proteins were down regulated. We observed an increase in tubulin post-translational modifications related to microtubule stability. As expected, db-cAMP increased PKA- and EPAC-dependent signalling. Consistently, pharmacological modulation of EPAC activity instructed cell differentiation, number of neurites, and neurite length in N1E-115 cells. Moreover, disruption of the PKA-AKAP interaction reduced these morphometric parameters. Interestingly, PKA and EPAC act synergistically to induce neuronal differentiation in N1E-115. Altogether these results show that the changes observed in the differentiation of N1E-115 cells proceed by regulating several microtubule-stabilizing factors, and the acquisition of a neuronal phenotype is a process involving concerted although independent functions of EPAC and PKA.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Microtubule Proteins/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Cell Differentiation , Humans , Signal Transduction
3.
Cytoskeleton (Hoboken) ; 69(7): 464-85, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22605667

ABSTRACT

The highly dynamic remodeling and cross talk of the microtubule and actin cytoskeleton support neuronal morphogenesis. Small RhoGTPases family members have emerged as crucial regulators of cytoskeletal dynamics. In this review we will comprehensively analyze findings that support the participation of RhoA, Rac, Cdc42, and TC10 in different neuronal morphogenetic events ranging from migration to synaptic plasticity. We will specifically address the contribution of these GTPases to support neuronal polarity and axonal elongation.


Subject(s)
Cell Polarity , Monomeric GTP-Binding Proteins/metabolism , Morphogenesis , Neurons/cytology , Neurons/enzymology , Animals , Humans , Models, Biological
4.
Behav Brain Res ; 203(1): 88-96, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19397934

ABSTRACT

Chronic stress induces dendritic atrophy in the inferior colliculus (IC, auditory mesencephalon) and impairs auditory avoidance conditioning. The aim of this study was to determine in Golgi preparations and in cued fear conditioning whether stress affects other auditory components, like the thalamic medial geniculate nucleus (MG) or the posterior thalamic nucleus (PO), in Sprague-Dawley rats. Chronic restraint stress produced a significant dendritic atrophy in the MG (stress: 407+/-55 microm; control: 808+/-120 microm; p<0.01) but did not affect auditory fear conditioning. The last result was in apparent contrast with the fact that stress impairs both the acquisition of auditory avoidance conditioned responses and the dendritic structure in two major nuclei of the auditory system. In order to analyze this disagreement, we investigated whether the stress-related freezing to tone occurring in the fear conditioning protocol corresponded to a conditioned or an unconditioned fear response, using changes in tone instead of light throughout conditioning trials. Chronic stress significantly enhanced visual fear conditioning in stressed animals compared to controls (stress: 58.9+/-8.42%, control: 23.31+/-8.01%; p<0.05), but this fear enhancement was related to unconditioned fear. Conversely, chronic stress did not affect the morphology of the PO (subserving both auditory and somatosensory information) or the corresponding auditory and somatosensory unconditioned responses (acoustic startle response and escape behavior). Our results suggest that the auditory conditioned stimulus can be processed in part independently of the IC and MG in the stressed animals, and sent to the amygdala via the PO inducing unconditioned fear. Comparable alterations could be produced in major depression.


Subject(s)
Auditory Perception/physiology , Conditioning, Classical/physiology , Dendrites/physiology , Geniculate Bodies/physiopathology , Neurons/physiology , Stress, Psychological/physiopathology , Acoustic Stimulation , Animals , Escape Reaction , Fear , Freezing Reaction, Cataleptic , Geniculate Bodies/cytology , Male , Neurons/cytology , Photic Stimulation , Posterior Thalamic Nuclei/cytology , Posterior Thalamic Nuclei/physiopathology , Random Allocation , Rats , Rats, Sprague-Dawley , Reflex, Startle , Restraint, Physical , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL