Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 329: 114995, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972641

ABSTRACT

Diagnostics employing multiple modalities have been essential for controlling and managing COVID-19, caused by SARS-CoV-2. However, scaling up Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR), the gold standard for SARS-CoV-2 detection, remains challenging in low and middle-income countries. Cost-effective and high-throughput alternatives like enzyme-linked immunosorbent assay (ELISA) could address this issue. We developed an in-house SARS-CoV-2 nucleocapsid capture ELISA, and validated on 271 nasopharyngeal swab samples from humans (n = 252), bovines (n = 10), and dogs (n = 9). This ELISA has a detection limit of 195 pg/100 µL of nucleocapsid protein and does not cross-react with related coronaviruses, ensuring high specificity to SARS-CoV-2. Diagnostic performance was evaluated using receiver operating characteristic curve analysis, showing a diagnostic sensitivity of 67.78 % and specificity of 100 %. Sensitivity improved to 74.32 % when excluding positive clinical samples with RT-qPCR Ct values > 25. Furthermore, inter-rater reliability analysis demonstrated substantial agreement (κ values = 0.73-0.80) with the VIRALDTECT II Multiplex RT-qPCR kit and perfect agreement with the CoVeasy™ COVID-19 rapid antigen self-test (κ values = 0.89-0.93). Our findings demonstrated that the in-house nucleocapsid capture ELISA is suitable for SARS-CoV-2 testing in humans and animals, meeting the necessary sensitivity and specificity thresholds for cost-effective, large-scale screening.

2.
Microb Pathog ; 161(Pt A): 105239, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34648926

ABSTRACT

The present experiment was conducted to study the role of cytokine, chemokine and TLRs responses of H9N2-PB2 reassortant H5N1 virus as compared to non-reassortant H5N1 virus isolated from crows in BALB/c mice. Two groups (12 mice each) of 6-8 weeks old BALB/c mice were intranasally inoculated with 106 EID50/ml of viruses A/crow/India/03CA04/2015 (H9N2-PB2 reassortant H5N1) and A/crow/India/02CA01/2012 (non-reassortant H5N1). At each interval, brain, lung and spleen were collected and relative quantification of cytokines, chemokines and TLRs was done by qPCR. The H9N2-PB2 reassortant H5N1 infected mice brain, the transcripts of TLR7 were significantly higher than other cytokines at 3dpi and KC was significantly upregulated at 7dpi. In non-reassortant H5N1 infected mice brain showed, TLR 7 and IFNα upregulation at 3dpi and IFNγ and TLR7 upregulation at 7dpi. The H9N2-PB2 reassortant H5N1 infected mice lung revealed, IL2 and TLR7 significant upregulation at 3dpi and in non-reassortant H5N1 infected mice, IL6 was significantly upregulated. At 7dpi in H9N2-PB2 reassortant H5N1 virus infected group mice, IL1 and TLR 3 were significantly upregulated in lungs and in non-reassortant group mice, IL1 and TLR7 were significantly upregulated. At 3dpi in H9N2-PB2 reassortant H5N1 virus infected mice spleen, IL4, IFNα, IFNß were significantly downregulated and TLR7 transcript was significantly upregulated. In non-reassortant group mice, IL6, IFNα, IFNß and TLR 3 were significantly upregulated. At 7dpi in H9N2-PB2 reassortant H5N1 virus infected mice spleen, IFNα, IFNß and TLR7 were significantly lower than other cytokines and in non-reassortant group mice, IFNα and IFNß were significantly downregulated. This study concludes that dysregulation of cytokines in lungs and brain might have contributed to the pathogenesis of both the viruses in mice.


Subject(s)
Crows , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Chickens , Cytokines , Influenza A Virus, H9N2 Subtype/genetics , Mice , Mice, Inbred BALB C , Reassortant Viruses/genetics
3.
Microb Pathog ; 141: 103984, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31972269

ABSTRACT

In this study, we assessed the pathogenicity of two H5N1 viruses isolated from crows in mice. Eighteen 6-8 weeks BALB/c mice each were intranasally inoculated with 106 EID50/ml of H5N1 viruses A/crow/India/03CA04/2015 (H9N2-PB2 reassortant H5N1) and A/crow/India/02CA01/2012 (Non-reassortant H5N1). The infected mice showed dullness, weight loss and ruffled fur coat. Histopathological examination of lungs showed severe congestion, haemorrhage, thrombus, fibrinous exudate in perivascular area, interstitial septal thickening, bronchiolitis and alveolitis leading to severe pneumonic changes and these lesions were less pronounced in reassortant virus infected mice. Viral replication was demonstrated in nasal mucosa, lungs, trachea and brain in both the groups. Brain, lung, nasal mucosa and trachea showed significantly higher viral RNA copies and presence of antigen in immunohistochemistry in both the groups. This study concludes that both the crow viruses caused morbidity and mortality in mice and the viruses were phenotypically highly virulent in mice. The H5N1 viruses isolated from synanthropes pose a serious public health concern and should be monitored continuously for their human spill-over.


Subject(s)
Influenza A Virus, H5N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Biopsy , Crows , Disease Susceptibility , Histocytochemistry , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , RNA, Viral , Reassortant Viruses/genetics , Viral Load , Virus Replication
4.
PLoS One ; 7(2): e31844, 2012.
Article in English | MEDLINE | ID: mdl-22363750

ABSTRACT

South Asia has experienced regular outbreaks of H5N1 avian influenza virus since its first detection in India and Pakistan in February, 2006. Till 2009, the outbreaks in this region were due to clade 2.2 H5N1 virus. In 2010, Nepal reported the first outbreak of clade 2.3.2 virus in South Asia. In February 2011, two outbreaks of H5N1 virus were reported in the State of Tripura in India. The antigenic and genetic analyses of seven H5N1 viruses isolated during these outbreaks were carried out. Antigenic analysis confirmed 64 to 256-fold reduction in cross reactivity compared with clade 2.2 viruses. The intravenous pathogenicity index of the isolates ranged from 2.80-2.95 indicating high pathogenicity to chickens. Sequencing of all the eight gene-segments of seven H5N1 viruses isolated in these outbreaks was carried out. The predicted amino acid sequence analysis revealed high pathogenicity to chickens and susceptibility to the antivirals, amantadine and oseltamivir. Phylogenetic analyses indicated that these viruses belong to clade 2.3.2.1 and were distinct to the clade 2.3.2.1 viruses isolated in Nepal. Identification of new clade 2.3.2 H5N1 viruses in South Asia is reminiscent of the introduction of clade 2.2 viruses in this region in 2006/7. It is now important to monitor whether the clade 2.3.2.1 is replacing clade 2.2 in this region or co-circulating with it. Continued co-circulation of various subclades of the H5N1 virus which are more adapted to land based poultry in a highly populated region such as South Asia increases the risk of evolution of pandemic H5N1 strains.


Subject(s)
Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/virology , Poultry/virology , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Genes, Viral/genetics , Geography , Hemagglutinin Glycoproteins, Influenza Virus/genetics , India , Influenza A Virus, H5N1 Subtype/immunology , Influenza in Birds/immunology , Molecular Sequence Data , Neuraminidase/genetics , Open Reading Frames/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...