Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948755

ABSTRACT

Huntington's disease (HD), due to expansion of a CAG repeat in HTT , is representative of a growing number of disorders involving somatically unstable short tandem repeats. We find that overlapping and distinct genetic modifiers of clinical landmarks and somatic expansion in blood DNA reveal an underlying complexity and cell-type specificity to the mismatch repair-related processes that influence disease timing. Differential capture of non-DNA-repair gene modifiers by multiple measures of cognitive and motor dysfunction argues additionally for cell-type specificity of pathogenic processes. Beyond trans modifiers, differential effects are also illustrated at HTT by a 5'-UTR variant that promotes somatic expansion in blood without influencing clinical HD, while, even after correcting for uninterrupted CAG length, a synonymous sequence change at the end of the CAG repeat dramatically hastens onset of motor signs without increasing somatic expansion. Our findings are directly relevant to therapeutic suppression of somatic expansion in HD and related disorders and provide a route to define the individual neuronal cell types that contribute to different HD clinical phenotypes.

2.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496508

ABSTRACT

Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.

3.
Prog Neurobiol ; 204: 102110, 2021 09.
Article in English | MEDLINE | ID: mdl-34166773

ABSTRACT

Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.


Subject(s)
Huntington Disease , Animals , Corpus Striatum , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Tumor Suppressor Protein p53/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics
4.
Ann Neurol ; 90(1): 76-88, 2021 07.
Article in English | MEDLINE | ID: mdl-33938021

ABSTRACT

OBJECTIVE: The aim of this study was to search for genes/variants that modify the effect of LRRK2 mutations in terms of penetrance and age-at-onset of Parkinson's disease. METHODS: We performed the first genomewide association study of penetrance and age-at-onset of Parkinson's disease in LRRK2 mutation carriers (776 cases and 1,103 non-cases at their last evaluation). Cox proportional hazard models and linear mixed models were used to identify modifiers of penetrance and age-at-onset of LRRK2 mutations, respectively. We also investigated whether a polygenic risk score derived from a published genomewide association study of Parkinson's disease was able to explain variability in penetrance and age-at-onset in LRRK2 mutation carriers. RESULTS: A variant located in the intronic region of CORO1C on chromosome 12 (rs77395454; p value = 2.5E-08, beta = 1.27, SE = 0.23, risk allele: C) met genomewide significance for the penetrance model. Co-immunoprecipitation analyses of LRRK2 and CORO1C supported an interaction between these 2 proteins. A region on chromosome 3, within a previously reported linkage peak for Parkinson's disease susceptibility, showed suggestive associations in both models (penetrance top variant: p value = 1.1E-07; age-at-onset top variant: p value = 9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. INTERPRETATION: This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;90:82-94.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Aged , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Mutation , Penetrance
5.
Sci Rep ; 10(1): 12804, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32733076

ABSTRACT

Previous studies on Parkinson's disease mechanisms have shown dysregulated extracellular transport of α-synuclein and growth factors in the extracellular space. In the human brain these consist of perineuronal nets, interstitial matrices, and basement membranes, each composed of a set of collagens, non-collagenous glycoproteins, proteoglycans, and hyaluronan. The manner by which amyloidogenic proteins spread extracellularly, become seeded, oligomerize, and are taken up by cells, depends on intricate interactions with extracellular matrix molecules. We sought to assess the alterations to structure of glycosaminoglycans and proteins that occur in PD brain relative to controls of similar age. We found that PD differs markedly from normal brain in upregulation of extracellular matrix structural components including collagens, proteoglycans and glycosaminoglycan binding molecules. We also observed that levels of hemoglobin chains, possibly related to defects in iron metabolism, were enriched in PD brains. These findings shed important new light on disease processes that occur in association with PD.


Subject(s)
Aging/genetics , Aging/metabolism , Brain/metabolism , Glycomics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Proteome/genetics , Proteomics , Collagen/metabolism , Extracellular Matrix/metabolism , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Humans , Hyaluronic Acid/metabolism , Proteoglycans/metabolism
6.
Biol Psychiatry ; 87(9): 857-865, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32087949

ABSTRACT

BACKGROUND: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized examination of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown. METHODS: We tested the hypothesis that psychiatric and cognitive symptoms in HD are influenced by the same common genetic variation as in the general population by 1) constructing polygenic risk scores from large genome-wide association studies of psychiatric and neurodegenerative disorders and of intelligence and 2) testing for correlation with the presence of psychiatric and cognitive symptoms in a large sample (n = 5160) of patients with HD. RESULTS: Polygenic risk score for major depression was associated specifically with increased risk of depression in HD, as was schizophrenia risk score with psychosis and irritability. Cognitive impairment and apathy were associated with reduced polygenic risk score for intelligence. CONCLUSIONS: Polygenic risk scores for psychiatric disorders, particularly depression and schizophrenia, are associated with increased risk of the corresponding psychiatric symptoms in HD, suggesting a common genetic liability. However, the genetic liability to cognitive impairment and apathy appears to be distinct from other psychiatric symptoms in HD. No associations were observed between HD symptoms and risk scores for other neurodegenerative disorders. These data provide a rationale for treatments effective in depression and schizophrenia to be used to treat depression and psychotic symptoms in HD.


Subject(s)
Huntington Disease , Psychotic Disorders , Cognition , Genome-Wide Association Study , Humans , Huntington Disease/complications , Huntington Disease/genetics , Psychotic Disorders/complications , Psychotic Disorders/genetics , Risk Factors
7.
BMC Med Genomics ; 12(1): 137, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619230

ABSTRACT

BACKGROUND: The mechanisms underlying neurodegeneration in the striatum of Huntingon's Disease (HD) brain are currently unknown. While the striatum is massively degenerated in symptomatic individuals, which makes cellular characterization difficult, it is largely intact in asymptomatic HD gene positive (HD+) individuals. Unfortunately, as striatal tissue samples from HD+ individuals are exceedingly rare, recent focus has been on the Brodmann Area 9 (BA9), a relatively unaffected region, as a surrogate tissue. In this study, we analyze gene expression in caudate nucleus (CAU) from two HD+ individuals and compare the results with healthy and symptomatic HD brains. METHODS: High-throughput mRNA sequencing (mRNA-Seq) datasets were generated from post-mortem CAU of 2 asymptomatic HD+ individuals and compared with 26 HD and 56 neurologically normal controls. Datasets were analyzed using a custom bioinformatic analysis pipeline to identify and interpret differentially expressed (DE) genes. Results were compared to publicly available brain mRNA-Seq datasets from the Genotype-Tissue Expression (GTEx) project. The analysis employed current state of the art bioinformatics tools and tailored statistical and machine learning methods. RESULTS: The transcriptional profiles in HD+ CAU and HD BA9 samples are highly similar. Differentially expressed (DE) genes related to the heat shock response, particularly HSPA6 and HSPA1A, are common between regions. The most perturbed pathways show extensive agreement when comparing disease with control. A random forest classifier predicts that the two HD+ CAU samples strongly resemble HD BA9 and not control BA9. Nonetheless, when genes were prioritized by their specificity to HD+ CAU, pathways spanning many biological processes emerge. Comparison of HD+ BA9 with HD BA9 identified NPAS4 and REST1/2 as potential early responders to disease and reflect the active disease process. CONCLUSIONS: The caudate nucleus in HD brain is dramatically affected prior to symptom onset. Gene expression patterns observed in the HD BA9 are also present in the CAU, suggesting a common response to disease. Substantial caudate-specific differences implicate many different biological pathways including metabolism, protein folding, inflammation, and neurogenic processes. While these results are at best trends due to small sample sizes, these results nonetheless provide the most detailed insight to date into the primary HD disease process.


Subject(s)
Brain/metabolism , Caudate Nucleus/metabolism , Huntington Disease/genetics , Transcription, Genetic , Case-Control Studies , Computational Biology/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Huntington Disease/pathology , Sequence Analysis, RNA
8.
Sci Transl Med ; 10(423)2018 01 10.
Article in English | MEDLINE | ID: mdl-29321258

ABSTRACT

Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.


Subject(s)
Crohn Disease/enzymology , Crohn Disease/genetics , Genetic Predisposition to Disease , Genetic Variation , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/enzymology , Parkinson Disease/genetics , Alleles , Autophagy , Cytoskeleton/metabolism , Exome/genetics , Gene Frequency , Gene Regulatory Networks , Genetic Loci , Genome, Human , Humans , Macrophages/metabolism , Macrophages/pathology , Odds Ratio , Open Reading Frames/genetics , Phenotype , Reproducibility of Results , Risk Factors , Exome Sequencing
9.
Neurology ; 90(4): e264-e272, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29282329

ABSTRACT

OBJECTIVE: To investigate the feasibility of microRNA (miRNA) levels in CSF as biomarkers for prodromal Huntington disease (HD). METHODS: miRNA levels were measured in CSF from 60 PREDICT-HD study participants using the HTG protocol. Using a CAG-Age Product score, 30 prodromal HD participants were selected based on estimated probability of imminent clinical diagnosis of HD (i.e., low, medium, high; n = 10/group). For comparison, participants already diagnosed (n = 15) and healthy controls (n = 15) were also selected. RESULTS: A total of 2,081 miRNAs were detected and 6 were significantly increased in the prodromal HD gene expansion carriers vs controls at false discovery rate q < 0.05 (miR-520f-3p, miR-135b-3p, miR-4317, miR-3928-5p, miR-8082, miR-140-5p). Evaluating the miRNA levels in each of the HD risk categories, all 6 revealed a pattern of increasing abundance from control to low risk, and from low risk to medium risk, which then leveled off from the medium to high risk and HD diagnosed groups. CONCLUSIONS: This study reports miRNAs as CSF biomarkers of prodromal and diagnosed HD. Importantly, miRNAs were detected in the prodromal HD groups furthest from diagnosis where treatments are likely to be most consequential and meaningful. The identification of potential biomarkers in the disease prodrome may prove useful in evaluating treatments that may postpone disease onset. CLINICALTRIALSGOV IDENTIFIER: NCT00051324.


Subject(s)
Huntington Disease/cerebrospinal fluid , MicroRNAs/cerebrospinal fluid , Adult , Biomarkers/cerebrospinal fluid , Feasibility Studies , Female , Heterozygote , Humans , Huntington Disease/genetics , Male , Middle Aged , Prodromal Symptoms
10.
Hum Mol Genet ; 26(19): 3859-3867, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28934397

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin. A recent genome-wide association analysis to discover genetic modifiers of HD onset age provided initial evidence for modifier loci on chromosomes 8 and 15 and suggestive evidence for a locus on chromosome 3. Here, genotyping of candidate single nucleotide polymorphisms in a cohort of 3,314 additional HD subjects yields independent confirmation of the former two loci and moves the third to genome-wide significance at MLH1, a locus whose mouse orthologue modifies CAG length-dependent phenotypes in a Htt-knock-in mouse model of HD. Both quantitative and dichotomous association analyses implicate a functional variant on ∼32% of chromosomes with the beneficial modifier effect that delays HD motor onset by 0.7 years/allele. Genomic DNA capture and sequencing of a modifier haplotype localize the functional variation to a 78 kb region spanning the 3'end of MLH1 and the 5'end of the neighboring LRRFIP2, and marked by an isoleucine-valine missense variant in MLH1. Analysis of expression Quantitative Trait Loci (eQTLs) provides modest support for altered regulation of MLH1 and LRRFIP2, raising the possibility that the modifier affects regulation of both genes. Finally, polygenic modification score and heritability analyses suggest the existence of additional genetic modifiers, supporting expanded, comprehensive genetic analysis of larger HD datasets.


Subject(s)
Huntingtin Protein/genetics , MutL Protein Homolog 1/genetics , Alleles , Animals , Chromosomes, Human, Pair 15 , Chromosomes, Human, Pair 8 , Disease Models, Animal , Genes, Modifier/genetics , Genome-Wide Association Study , Genotype , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Mice , MutL Protein Homolog 1/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Trinucleotide Repeats
11.
Eur J Hum Genet ; 25(11): 1202-1209, 2017 11.
Article in English | MEDLINE | ID: mdl-28832564

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat in HTT, resulting in an extended polyglutamine tract in huntingtin. We and others have previously determined that the HD-causing expansion occurs on multiple different haplotype backbones, reflecting more than one ancestral origin of the same type of mutation. In view of the therapeutic potential of mutant allele-specific gene silencing, we have compared and integrated two major systems of HTT haplotype definition, combining data from 74 sequence variants to identify the most frequent disease-associated and control chromosome backbones and revealing that there is potential for additional resolution of HD haplotypes. We have used the large collection of 4078 heterozygous HD subjects analyzed in our recent genome-wide association study of HD age at onset to estimate the frequency of these haplotypes in European subjects, finding that common genetic variation at HTT can distinguish the normal and CAG-expanded chromosomes for more than 95% of European HD individuals. As a resource for the HD research community, we have also determined the haplotypes present in a series of publicly available HD subject-derived fibroblasts, induced pluripotent cells, and embryonic stem cells in order to facilitate efforts to develop inclusive methods of allele-specific HTT silencing applicable to most HD patients. Our data providing genetic guidance for therapeutic gene-based targeting will significantly contribute to the developments of rational treatments and implementation of precision medicine in HD.


Subject(s)
Haplotypes , Huntington Disease/genetics , Cell Line , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Gene Frequency , Heterozygote , Humans , Huntingtin Protein/genetics , Induced Pluripotent Stem Cells/metabolism , Polymorphism, Genetic
12.
Sci Rep ; 7(1): 1307, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28465506

ABSTRACT

We have previously shown that exon 1 of the huntingtin gene does not always splice to exon 2 resulting in the production of a small polyadenylated mRNA (HTTexon1) that encodes the highly pathogenic exon 1 HTT protein. The level of this read-through product is proportional to CAG repeat length and is present in all knock-in mouse models of Huntington's disease (HD) with CAG lengths of 50 and above and in the YAC128 and BACHD mouse models, both of which express a copy of the human HTT gene. We have now developed specific protocols for the quantitative analysis of the transcript levels of HTTexon1 in human tissue and applied these to a series of fibroblast lines and post-mortem brain samples from individuals with either adult-onset or juvenile-onset HD. We found that the HTTexon1 mRNA is present in fibroblasts from juvenile HD patients and can also be readily detected in the sensory motor cortex, hippocampus and cerebellum of post-mortem brains from HD individuals, particularly in those with early onset disease. This finding will have important implications for strategies to lower mutant HTT levels in patients and the design of future therapeutics.


Subject(s)
Alternative Splicing/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Sensorimotor Cortex/physiopathology , Animals , Autopsy , Cerebellum/physiopathology , Disease Models, Animal , Exons/genetics , Female , Hippocampus/physiopathology , Humans , Huntington Disease/physiopathology , Male , Mice , Mice, Knockout , Mutant Proteins/genetics , RNA Splicing/genetics , RNA, Messenger/genetics
13.
BMC Bioinformatics ; 18(1): 91, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28166718

ABSTRACT

BACKGROUND: Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. RESULTS: When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. CONCLUSIONS: We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.


Subject(s)
Computational Biology/methods , Huntington Disease/genetics , Sequence Analysis, RNA/methods , Bayes Theorem , Case-Control Studies , High-Throughput Nucleotide Sequencing , Humans , Huntington Disease/diagnosis , Logistic Models , Models, Theoretical , Reproducibility of Results , Sample Size
14.
Front Mol Neurosci ; 10: 430, 2017.
Article in English | MEDLINE | ID: mdl-29375298

ABSTRACT

Huntington's and Parkinson's Diseases (HD and PD) are neurodegenerative disorders that share some pathological features but are disparate in others. For example, while both diseases are marked by aberrant protein aggregation in the brain, the specific proteins that aggregate and types of neurons affected differ. A better understanding of the molecular similarities and differences between these two diseases may lead to a more complete mechanistic picture of both the individual diseases and the neurodegenerative process in general. We sought to characterize the common transcriptional signature of HD and PD as well as genes uniquely implicated in each of these diseases using mRNA-Seq data from post mortem human brains in comparison to neuropathologically normal controls. The enriched biological pathways implicated by HD differentially expressed genes show remarkable consistency with those for PD differentially expressed genes and implicate the common biological processes of neuroinflammation, apoptosis, transcriptional dysregulation, and neuron-associated functions. Comparison of the differentially expressed (DE) genes highlights a set of consistently altered genes that span both diseases. In particular, processes involving nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and transcription factor cAMP response element-binding protein (CREB) are the most prominent among the genes common to HD and PD. When the combined HD and PD data are compared to controls, relatively few additional biological processes emerge as significantly enriched, suggesting that most pathways are independently seen within each disorder. Despite showing comparable numbers of DE genes, DE genes unique to HD are enriched in far more coherent biological processes than the DE genes unique to PD, suggesting that PD may represent a more heterogeneous disorder. The complexity of the biological processes implicated by this analysis provides impetus for the development of better experimental models to validate the results.

15.
BMC Genomics ; 17(1): 776, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27716130

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression mainly through translational repression of target mRNA molecules. More than 2700 human miRNAs have been identified and some are known to be associated with disease phenotypes and to display tissue-specific patterns of expression. METHODS: We used high-throughput small RNA sequencing to discover novel miRNAs in 93 human post-mortem prefrontal cortex samples from individuals with Huntington's disease (n = 28) or Parkinson's disease (n = 29) and controls without neurological impairment (n = 36). A custom miRNA identification analysis pipeline was built, which utilizes miRDeep* miRNA identification and result filtering based on false positive rate estimates. RESULTS: Ninety-nine novel miRNA candidates with a false positive rate of less than 5 % were identified. Thirty-four of the candidate miRNAs show sequence similarity with known mature miRNA sequences and may be novel members of known miRNA families, while the remaining 65 may constitute previously undiscovered families of miRNAs. Nineteen of the 99 candidate miRNAs were replicated using independent, publicly-available human brain RNA-sequencing samples, and seven were experimentally validated using qPCR. CONCLUSIONS: We have used small RNA sequencing to identify 99 putative novel miRNAs that are present in human brain samples.


Subject(s)
Brain/metabolism , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Autopsy , Brain/pathology , Gene Expression Regulation , Humans , Huntington Disease/genetics , Parkinson Disease/genetics
16.
Lancet Neurol ; 15(12): 1248-1256, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27692902

ABSTRACT

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) mutation 6055G→A (Gly2019Ser) accounts for roughly 1% of patients with Parkinson's disease in white populations, 13-30% in Ashkenazi Jewish populations, and 30-40% in North African Arab-Berber populations, although age of onset is variable. Some carriers have early-onset parkinsonism, whereas others remain asymptomatic despite advanced age. We aimed to use a genome-wide approach to identify genetic variability that directly affects LRRK2 Gly2019Ser penetrance. METHODS: Between 2006 and 2012, we recruited Arab-Berber patients with Parkinson's disease and their family members (aged 18 years or older) at the Mongi Ben Hamida National Institute of Neurology (Tunis, Tunisia). Patients with Parkinson's disease were diagnosed by movement disorder specialists in accordance with the UK Parkinson's Disease Society Brain Bank criteria, without exclusion of familial parkinsonism. LRRK2 carrier status was confirmed by Sanger sequencing or TaqMan SNP assays-on-demand. We did genome-wide linkage analysis using data from multi-incident Arab-Berber families with Parkinson's disease and LRRK2 Gly2019Ser (with both affected and unaffected family members). We assessed Parkinson's disease age of onset both as a categorical variable (dichotomised by median onset) and as a quantitative trait. We used data from another cohort of unrelated Tunisian LRRK2 Gly2019Ser carriers for subsequent locus-specific genotyping and association analyses. Whole-genome sequencing in a subset of 14 unrelated Arab-Berber individuals who were LRRK2 Gly2019Ser carriers (seven with early-onset disease and seven elderly unaffected individuals) subsequently informed imputation and haplotype analyses. We replicated the findings in separate series of LRRK2 Gly2019Ser carriers originating from Algeria, France, Norway, and North America. We also investigated associations between genotype, gene, and protein expression in human striatal tissues and murine LRRK2 Gly2019Ser cortical neurons. FINDINGS: Using data from 41 multi-incident Arab-Berber families with Parkinson's disease and LRRK2 Gly2019Ser (150 patients and 103 unaffected family members), we identified significant linkage on chromosome 1q23.3 to 1q24.3 (non-parametric logarithm of odds score 2·9, model-based logarithm of odds score 4·99, θ=0 at D1S2768). In a cohort of unrelated Arab-Berber LRRK2 Gly2019Ser carriers, subsequent association mapping within the linkage region suggested genetic variability within DNM3 as an age-of-onset modifier of disease (n=232; rs2421947; haplotype p=1·07 × 10-7). We found that DNM3 rs2421947 was a haplotype tag for which the median onset of LRRK2 parkinsonism in GG carriers was 12·5 years younger than that of CC carriers (Arab-Berber cohort, hazard ratio [HR] 1·89, 95% CI 1·20-2·98). Replication analyses in separate series from Algeria, France, Norway, and North America (n=263) supported this finding (meta-analysis HR 1·61, 95% CI 1·15-2·27, p=0·02). In human striatum, DNM3 expression varied as a function of rs2421947 genotype, and dynamin-3 localisation was perturbed in murine LRRK2 Gly2019Ser cortical neurons. INTERPRETATION: Genetic variability in DNM3 modifies age of onset for LRRK2 Gly2019Ser parkinsonism and informs disease-relevant translational neuroscience. Our results could be useful in genetic counselling for carriers of this mutation and in clinical trial design. FUNDING: The Canada Excellence Research Chairs (CERC), Leading Edge Endowment Fund (LEEF), Don Rix BC Leadership Chair in Genetic Medicine, National Institute on Aging, National Institute of Neurological Disorders and Stroke, the Michael J Fox Foundation, Mayo Foundation, the Roger de Spoelberch Foundation, and GlaxoSmithKline.


Subject(s)
Dynamin III/genetics , Genetic Linkage/genetics , Genome-Wide Association Study , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Arabs/genetics , Female , Humans , Male , Middle Aged , Parkinson Disease/ethnology , Pedigree , Penetrance , Tunisia/ethnology
17.
J Bone Miner Res ; 31(12): 2085-2097, 2016 12.
Article in English | MEDLINE | ID: mdl-27476799

ABSTRACT

Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n = 15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n = 21,701) and clinical vertebral fracture (n = 5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF] = 3%) was associated with higher vBMD (ß = 0.22, p = 1.9 × 10-8 ) and decreased risk of radiographic vertebral fracture (odds ratio [OR] = 0.75; false discovery rate [FDR] p = 0.01). In 1p36.12, rs12742784 (MAF = 21%) was associated with higher vBMD (ß = 0.09, p = 1.2 × 10-10 ) and decreased risk of clinical vertebral fracture (OR = 0.82; FDR p = 7.4 × 10-4 ). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (ß = 0.28, FDR p = 0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (ß = 0.12, FDR p = 1.7 × 10-3 , functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence. © 2016 American Society for Bone and Mineral Research.


Subject(s)
Bone Density/genetics , Excitatory Amino Acid Transporter 1/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Receptor, EphB2/genetics , Spinal Fractures/genetics , Spine/pathology , Animals , Biopsy , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Cancellous Bone/physiopathology , Excitatory Amino Acid Transporter 1/metabolism , Gene Expression Regulation , Humans , Linkage Disequilibrium/genetics , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Lumbar Vertebrae/physiopathology , Mice , Molecular Sequence Annotation , Organ Size , Osteoblasts/metabolism , Quantitative Trait Loci/genetics , Receptor, EphB2/metabolism , Risk Factors , Spinal Fractures/diagnostic imaging , Spinal Fractures/pathology , Spinal Fractures/physiopathology , Spine/diagnostic imaging
18.
PLoS One ; 11(8): e0160925, 2016.
Article in English | MEDLINE | ID: mdl-27508417

ABSTRACT

Genome-wide association studies (GWAS) have identified the GAK/DGKQ/IDUA region on 4p16.3 among the top three risk loci for Parkinson's disease (PD), but the specific gene and risk mechanism are unclear. Here, we report transcripts containing the 3' clathrin-binding domain of GAK identified by RNA deep-sequencing in post-mortem human brain tissue as having increased expression in PD. Furthermore, carriers of 4p16.3 PD GWAS risk SNPs show decreased expression of one of these transcripts, GAK25 (Gencode Transcript 009), which correlates with the expression of genes functioning in the synaptic vesicle membrane. Together, these findings provide strong evidence for GAK clathrin-binding- and J-domain transcripts' influence on PD pathogenicity, and for a role for GAK in regulating synaptic function in PD.


Subject(s)
Chromosomes, Human, Pair 4 , Intracellular Signaling Peptides and Proteins/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , Synaptic Vesicles/genetics , Brain/pathology , Exons , Gene Expression , Genome-Wide Association Study , Humans , Mitochondria/genetics , Parkinson Disease/pathology
20.
Nature ; 533(7601): 95-9, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27096366

ABSTRACT

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Alleles , Brain/metabolism , CRISPR-Cas Systems/genetics , Epigenesis, Genetic/genetics , Genetic Engineering , Genome, Human/genetics , Homeodomain Proteins/metabolism , Humans , Models, Genetic , Pluripotent Stem Cells/metabolism , Risk , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...