Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 80(6): 2976-2990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38318926

ABSTRACT

BACKGROUND: The wheat stem sawfly (WSS, Cephus cinctus) is a major pest of wheat (Triticum aestivum) and can cause significant yield losses. WSS damage results from stem boring and/or cutting, leading to the lodging of wheat plants. Although solid-stem wheat genotypes can effectively reduce larval survival, they may have lower yields than hollow-stem genotypes and show inconsistent solidness expression. Because of limited resistance sources to WSS, evaluating diverse wheat germplasm for novel resistance genes is crucial. We evaluated 91 accessions across five wild wheat species (Triticum monococcum, T. urartu, T. turgidum, T. timopheevii, and Aegilops tauschii) and common wheat cultivars (T. aestivum) for antixenosis (host selection) and antibiosis (host suitability) to WSS. Host selection was measured as the number of eggs after adult oviposition, and host suitability was determined by examining the presence or absence of larval infestation within the stem. The plants were grown in the greenhouse and brought to the field for WSS infestation. In addition, a phylogenetic analysis was performed to determine the relationship between the WSS traits and phylogenetic clustering. RESULTS: Overall, Ae. tauschii, T. turgidum and T. urartu had lower egg counts and larval infestation than T. monococcum, and T. timopheevii. T. monococcum, T. timopheevii, T. turgidum, and T. urartu had lower larval weights compared with T. aestivum. CONCLUSION: This study shows that wild relatives of wheat could be a valuable source of alleles for enhancing resistance to WSS and identifies specific germplasm resources that may be useful for breeding. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Hymenoptera , Larva , Triticum , Triticum/genetics , Animals , Larva/growth & development , Larva/physiology , Larva/genetics , Hymenoptera/physiology , Hymenoptera/genetics , Phylogeny , Herbivory
2.
Insect Sci ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319817

ABSTRACT

Aphids are phloem-feeding insects that reduce crop productivity due to feeding and transmission of plant viruses. When aphids disperse across the landscape to colonize new host plants, they will often probe on a wide variety of nonhost plants before settling on a host suitable for feeding and reproduction. There is limited understanding of the diversity of plants that aphids probe on within a landscape, and characterizing this diversity can help us better understand host use patterns of aphids. Here, we used gut content analysis (GCA) to identify plant genera that were probed by aphid vectors of potato virus Y (PVY). Aphids were trapped weekly near potato fields during the growing seasons of 2020 and 2021 in San Luis Valley in Colorado. High-throughput sequencing of plant barcoding genes, trnF and ITS2, from 200 individual alate (i.e., winged) aphids representing nine vector species of PVY was performed using the PacBio sequencing platform, and sequences were identified to genus using NCBI BLASTn. We found that 34.7% of aphids probed upon presumed PVY host plants and that two of the most frequently detected plant genera, Solanum and Brassica, represent important crops and weeds within the study region. We found that 75% of aphids frequently probed upon PVY nonhosts including many species that are outside of their reported host ranges. Additionally, 19% of aphids probed upon more than one plant species. This study provides the first evidence from high-throughput molecular GCA of aphids and reveals host use patterns that are relevant for PVY epidemiology.

3.
Environ Entomol ; 53(1): 34-39, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37535869

ABSTRACT

Of the many arthropod species affecting hemp (Cannabis sativa L.) cultivation in the United States, one species of particular importance is the hemp russet mite (Aculops cannabicola, HRM). Hemp russet mite is a microscopic arthropod which feeds on all parts of hemp plants. Due to its minute size, HRM can proliferate undetected for a long time, complicating management efforts and causing serious economic losses. DNA sequencing and PCR assays can facilitate accurate identification and early detection of HRM in infested-plants. Therefore, a real-time SYBR Green based species-specific PCR assay (quantitative PCR, qPCR) was developed for the identification of HRM DNA by amplification of a 104 bp Internal Transcribed Spacer 1 (ITS1) sequence. The detection limit was estimated to be approximately 48 copies of the HRM marker gene sequence. The real-time-PCR assay is rapid, detects all life stages of mite under 2 hours. A 10-fold serial dilution of the plasmid DNA containing the ITS1 insert were used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay showed a strong linear relationship with HRM DNA with R2 of 0.96. The assay was tested against several commonly found hemp pests including two-spotted spider mite and western flower thrips to determine specificity of the assay and to show that no non-target species DNA was amplified. The outcomes of this research will have important applications for agricultural biosecurity through accurate identification of HRM, early detection and timely deployment of management tactics to manage and prevent pest outbreaks.


Subject(s)
Cannabis , Animals , Real-Time Polymerase Chain Reaction , Cannabis/genetics , Sequence Analysis, DNA , Species Specificity , DNA
4.
Environ Entomol ; 53(1): 18-25, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37535975

ABSTRACT

Hemp russet mite, Aculops cannibicola Farkas (Acari: Eriophyidae), is one of the key pests of hemp, Cannabis sativa L. (Rosales: Cannabaceae). Hemp russet mite feeds primarily on new growth and can reach high densities, frequently exceeding a thousand mites per leaf, and leading to a decrease in yield and quality of cannabinoids. The objective of this experiment was to determine the efficacy of reduced-risk pesticides used in organic crop protection as well as conventional insecticides in managing hemp russet mites in a greenhouse and field. Hemp (var. Unicorn) was exposed to leaves heavily infested with hemp russet mites, and once mite densities reached an average of 50 mites per leaf, the following insecticides were applied to the plants: abamectin, etoxazole, fenpyroximate, rosemary oil, and 2 concentrations of a mineral oil. An application of sulfur was also included in the field experiment. Treatments were replicated 9 times in the greenhouse and 6 times in the field. Each of the pesticides significantly reduced hemp russet mite densities in the greenhouse, with all treatments resulting in significant decrease in mite populations 10 days after the initial treatment that persisted until the end of the experiment. On the other hand, only fenpyroximate, sulfur, and rosemary oil provided strong and effective suppression of the mites in the field. This is the first study to test these products against hemp russet mites in hemp, and our outcomes indicate that several pesticides available for organic crop production can provide effective control of the pest.


Subject(s)
Benzoates , Cannabis , Insecticides , Mites , Pesticides , Pyrazoles , Animals , Insecticides/pharmacology , Sulfur
5.
Plant Genome ; 17(1): e20412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37968867

ABSTRACT

Wheat (Triticum aestivum L.) is crucial to global food security but is often threatened by diseases, pests, and environmental stresses. Wheat-stem sawfly (Cephus cinctus Norton) poses a major threat to food security in the United States, and solid-stem varieties, which carry the stem-solidness locus (Sst1), are the main source of genetic resistance against sawfly. Marker-assisted selection uses molecular markers to identify lines possessing beneficial haplotypes, like that of the Sst1 locus. In this study, an R package titled "HaploCatcher" was developed to predict specific haplotypes of interest in genome-wide genotyped lines. A training population of 1056 lines genotyped for the Sst1 locus, known to confer stem solidness, and genome-wide markers was curated to make predictions of the Sst1 haplotypes for 292 lines from the Colorado State University wheat breeding program. Predicted Sst1 haplotypes were compared to marker-derived haplotypes. Our results indicated that the training set was substantially predictive, with kappa scores of 0.83 for k-nearest neighbors and 0.88 for random forest models. Forward validation on newly developed breeding lines demonstrated that a random forest model, trained on the total available training data, had comparable accuracy between forward and cross-validation. Estimated group means of lines classified by haplotypes from PCR-derived markers and predictive modeling did not significantly differ. The HaploCatcher package is freely available and may be utilized by breeding programs, using their own training populations, to predict haplotypes for whole-genome sequenced early generation material.


Subject(s)
Hymenoptera , Plant Breeding , Humans , Animals , Haplotypes , Triticum/genetics , Genotype
6.
Front Plant Sci ; 14: 1223894, 2023.
Article in English | MEDLINE | ID: mdl-37915508

ABSTRACT

Cannabis sativa is known for having unique specialized or secondary metabolites, cannabinoids that are derived from an extension of the terpene pathway in the Cannabis lineage and includes more than 100 other similar metabolites. Despite the assumption that cannabinoids evolved as novel herbivory defense adaptations, there is limited research addressing the role of cannabinoids in C. sativa responses to insect herbivores. Here we investigated the role of cannabidiol (CBD), the predominant cannabinoid in hemp, in plant defense against cannabis aphid (Phorodon cannabis), one of the most damaging pests of hemp. We hypothesize that insect feeding may induce changes in cannabinoids as an adaptive strategy for defense. We found that mean fecundity, net reproductive rate (R0) and adult longevity of cannabis aphids was reduced on the high cannabinoid cultivar compared to the low- cannabinoid cultivar in whole plant assays. In contrast, supplementation of CBD in artificial feeding assays increased aphid fecundity from day 1 to day 3. Additionally, aphid feeding did not impact cannabinoid levels in leaf tissues with the exception of Δ9-tetrahydrocannabinol (THC). This suggests that other cannabinoids and/or metabolites such as terpenes are causing the observed decrease in aphid performance in the whole plant assays. In addition to cannabinoids, C. sativa also possesses a range of defense mechanisms via phytohormone signaling pathways that are well described in other plant species. Indeed, cannabis aphid feeding significantly increased levels of the major phytohormones, salicylic acid, jasmonic acid, and abscisic acid, which are known to be involved in plant defense responses against aphid species. These results highlight the interplay between cannabinoid synthesis and phytohormone pathways and necessitate further investigation into this complex interaction.

7.
J Econ Entomol ; 116(5): 1706-1714, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37450624

ABSTRACT

Hemp is rapidly becoming a crop of global agricultural importance, and one of the more serious pests of this crop is hemp russet mite (HRM) Aculops cannabicola (Acari: Eriophyidae). Significant knowledge gaps presently exist regarding critical aspects of pest biology, quantification of crop damage, and efficacy of pesticides. Here we assessed the role of cannabidiol (CBD) on HRM performance, efficacy of sulfur treatments in field trials, and effect of hot water immersion with and without surfactants in reducing HRM counts on hemp cuttings. We found that HRM fecundity was reduced on a high-CBD cultivar compared with a low-CBD cultivar in detached leaf assays. In contrast, HRM fecundity and survival were not impacted when reared on high-CBD diet in artificial feeding assays. This suggests that cannabinoids other than CBD may aid in reduction of mite populations on the high-CBD cultivar. Sulfur sprays reduced HRM populations by up to 98% with the greatest effects seen in plants receiving dual applications, one during the vegetative period in July and the second at the initiation of flowering in August. Yields of plants treated with sulfur increased by up to 33%, and there was a further increase in cannabinoid production by up to 45% relative to untreated plants. Hot water immersion treatments with and without surfactant solution reduced HRM on infested hemp cuttings, and no phytotoxicity was observed. This study provides novel approaches to mitigating HRM at multiple stages in hemp production.

8.
Int J Mol Sci ; 25(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38203190

ABSTRACT

The increased cultivation of Cannabis sativa L. in North America, represented by high Δ9-tetrahydrocannabinol-containing (high-THC) cannabis genotypes and low-THC-containing hemp genotypes, has been impacted by an increasing number of plant pathogens. These include fungi which destroy roots, stems, and leaves, in some cases causing a build-up of populations and mycotoxins in the inflorescences that can negatively impact quality. Viroids and viruses have also increased in prevalence and severity and can reduce plant growth and product quality. Rapid diagnosis of the occurrence and spread of these pathogens is critical. Techniques in the area of molecular diagnostics have been applied to study these pathogens in both cannabis and hemp. These include polymerase chain reaction (PCR)-based technologies, including RT-PCR, multiplex RT-PCR, RT-qPCR, and ddPCR, as well as whole-genome sequencing (NGS) and bioinformatics. In this study, examples of how these technologies have enhanced the rapidity and sensitivity of pathogen diagnosis on cannabis and hemp will be illustrated. These molecular tools have also enabled studies on the diversity and origins of specific pathogens, specifically viruses and viroids, and these will be illustrated. Comparative studies on the genomics and metabolomics of healthy and diseased plants are urgently needed to provide insight into their impact on the quality and composition of cannabis and hemp-derived products. Management of these pathogens will require monitoring of their spread and survival using the appropriate technologies to allow accurate detection, followed by appropriate implementation of disease control measures.


Subject(s)
Cannabis , Hallucinogens , Cannabis/genetics , Pathology, Molecular , Computational Biology , Genomics , Cannabinoid Receptor Agonists
9.
Front Plant Sci ; 13: 928949, 2022.
Article in English | MEDLINE | ID: mdl-35845691

ABSTRACT

Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The Wsm2 locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding. In this study, linkage mapping in a doubled-haploid (DH) mapping population confirmed Wsm2 as a major locus conferring WSMV resistance in wheat. The Wsm2 flanking markers were mapped to a 4.0 Mbp region at the distal end of chromosome 3BS containing 142 candidate genes. Eight haplotypes were identified from seventeen wheat genotypes collected from different agroecological zones, indicating that Wsm2 lies in a dynamic region of the genome with extensive structural variation and that it is likely a rare allele in most available genome assemblies of common wheat varieties. Exome sequencing of the variety "Snowmass", which carries Wsm2, revealed several loss-of-function mutations and copy number variants in the 142 candidate genes within the Wsm2 interval. Six of these genes are differentially expressed in "Snowmass" compared to "Antero," a variety lacking Wsm2, including a gene that encodes a nucleotide-binding site leucine-rich repeat (NBS-LRR) type protein with homology to RPM1. A de novo assembly of unmapped RNA-seq reads identified nine transcripts expressed only in "Snowmass," three of which are also induced in response to WSMV inoculation. This study sheds light on the variation underlying Wsm2 and provides a list of candidate genes for subsequent validation.

10.
Environ Entomol ; 51(2): 322-331, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35243512

ABSTRACT

Aphids are the most prolific vectors of plant viruses resulting in significant yield losses to crops worldwide. Potato virus Y (PVY) is transmitted in a non-persistent manner by 65 species of aphids. With the increasing acreage of hemp (Cannabis sativa L.) (Rosales: Cannabaceae) in the United States, we were interested to know if the cannabis aphid (Phorodon cannabis Passerini) (Hemiptera: Aphididae) is a potential vector of PVY. Here, we conduct transmission assays and utilize the electrical penetration graph (EPG) technique to determine whether cannabis aphids can transmit PVY to hemp (host) and potato (non-host) (Solanum tuberosum L.) (Solanales: Solanaceace). We show for the first time that the cannabis aphid is an efficient vector of PVY to both hemp (96% transmission rate) and potato (91%) using cohorts of aphids. In contrast, individual aphids transmitted the virus more efficiently to hemp (63%) compared to potato (19%). During the initial 15 min of EPG recordings, aphids demonstrated lower number and time spent performing intracellular punctures on potato compared to hemp, which may in part explain low virus transmission to potato using individual aphids. During the entire 8-hour recording, viruliferous aphids spent less time ingesting phloem compared to non-viruliferous aphids on hemp. This reduced host acceptance could potentially cause viruliferous aphids to disperse thereby increasing virus transmission. Overall, our study shows that cannabis aphid is an efficient vector of PVY, and that virus infection and host plant suitability affect feeding behaviors of the cannabis aphid in ways which may increase virus transmission.


Subject(s)
Aphids , Cannabis , Potyvirus , Solanum tuberosum , Virus Diseases , Animals , Feeding Behavior , Plant Diseases
11.
Plant Dis ; 106(10): 2678-2688, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35196102

ABSTRACT

The wheat curl mite (WCM) is a vector of three important wheat viruses in the U.S. Great Plains: wheat streak mosaic virus (WSMV), triticum mosaic virus (TriMV), and High Plains wheat mosaic virus (HPWMoV). This study was conducted to determine the current profile of WCM and WCM-transmitted viruses of wheat and their occurrence in Colorado, including novel wheat viruses via virome analysis. There was a high rate of virus incidence in symptomatic wheat samples collected in 2019 (95%) and 2020 (77%). Single infection of WSMV was most common in both years, followed by coinfection with WSMV + TriMV and WSMV + HPWMoV. Both type 1 and type 2 mite genotypes were found in Colorado. There was high genetic diversity of WSMV and HPWMoV isolates, whereas TriMV isolates showed minimal sequence variation. Analysis of WSMV isolates revealed novel virus variants, including one isolate from a variety trial, where severe disease symptoms were observed on wheat varieties carrying Wsm2, a known virus resistance locus. Virome analysis identified two to four sequence variants of all eight RNA segments of HPWMoV, which suggests co-occurrence of multiple genotypes within host populations and presence of a variant of HPWMoV. A possible novel virus in the family Tombusviridae and several mycoviruses were identified. Overall, the data presented here highlight the need to define the effect of novel WCM-transmitted virus variants on disease severity and the role of novel viruses.


Subject(s)
Mites , Potyviridae , Animals , Colorado , Mites/genetics , Plant Diseases , Potyviridae/genetics , RNA , Virome
12.
Front Plant Sci ; 12: 689986, 2021.
Article in English | MEDLINE | ID: mdl-34335657

ABSTRACT

The soybean aphid (Aphis glycines) continues to threaten soybean production in the United States. A suite of management strategies, such as planting aphid-resistant cultivars, has been successful in controlling soybean aphids. Several Rag genes (resistance against A. glycines) have been identified, and two are currently being deployed in commercial soybean cultivars. However, the mechanisms underlying Rag-mediated resistance are yet to be identified. In this study, we sought to determine the nature of resistance conferred by the Rag5 gene using behavioral, molecular biology, physiological, and biochemical approaches. We confirmed previous findings that plants carrying the Rag5 gene were resistant to soybean aphids in whole plant assays, and this resistance was absent in detached leaf assays. Analysis of aphid feeding behaviors using the electrical penetration graph technique on whole plants and detached leaves did not reveal differences between the Rag5 plants and Williams 82, a susceptible cultivar. In reciprocal grafting experiments, aphid populations were lower in the Rag5/rag5 (Scion/Root stock) chimera, suggesting that Rag5-mediated resistance is derived from the shoots. Further evidence for the role of stems comes from poor aphid performance in detached stem plus leaf assays. Gene expression analysis revealed that biosynthesis of the isoflavone kaempferol is upregulated in both leaves and stems in resistant Rag5 plants. Moreover, supplementing with kaempferol restored resistance in detached stems of plants carrying Rag5. This study demonstrates for the first time that Rag5-mediated resistance against soybean aphids is likely derived from stems.

13.
PLoS One ; 16(2): e0245380, 2021.
Article in English | MEDLINE | ID: mdl-33539358

ABSTRACT

Aphid feeding behavior and performance on a given host plant are influenced by the plants' physical and chemical traits, including structural characters such as trichomes and nutritional composition. In this study, we determined the feeding behavior and performance of soybean aphids (Aphis glycines) on the stem, the adaxial (upper), and the abaxial (lower) leaf surfaces during early vegetative growth of soybean plants. Using the electrical penetration graph technique, we found that aphids feeding on the stem took the longest time to begin probing. Once aphids began probing, the sieve elements were more conducive to feeding, as evidenced by less salivation on the stem than either leaf surface. In whole-plant assays, stems harbored higher aphid populations, and aphids had shorter development time on stems than the adaxial and the abaxial leaf surfaces. We compared trichome density and length on the stem, the adaxial, and the abaxial leaf surfaces to investigate whether plant trichomes affected aphid feeding and performance. There were higher density and longer trichomes on stems, which likely resulted in aphids taking a longer time to probe. Still a negative impact on aphid population growth was not observed. Analysis of phloem sap composition revealed that vascular sap-enriched exudates from stems had higher sugars and amino acids than exudates from leaves. In artificial diet feeding assays, the population of aphids reared on a diet supplemented with stem exudates was higher than on a diet supplemented with leaf petiole exudates which is in agreement with results of the whole-plant assays. In summary, our findings suggest that the performance of soybean aphids on a specific plant location is primarily driven by accessibility and the quality of phloem composition rather than structural traits.


Subject(s)
Aphids/growth & development , Feeding Behavior/physiology , Glycine max/metabolism , Nutrients , Phloem/metabolism , Plant Leaves/metabolism , Plant Stems/metabolism , Trichomes/metabolism , Amino Acids/metabolism , Animals , Phloem/growth & development , Plant Leaves/growth & development , Plant Stems/growth & development , Glycine max/growth & development , Sugars/metabolism , Trichomes/growth & development
14.
Insect Sci ; 28(2): 521-532, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32240579

ABSTRACT

Diurnal variation in phloem sap composition has a strong influence on aphid performance. The sugar-rich phloem sap serves as the sole diet for aphids and a suite of physiological mechanisms and behaviors allow them to tolerate the high osmotic stress. Here, we tested the hypothesis that night-time feeding by aphids is a behavior that takes advantage of the low sugar diet in the night to compensate for osmotic stress incurred while feeding on high sugar diet during the day. Using the electrical penetration graph (EPG) technique, we examined the effects of diurnal rhythm on feeding behaviors of bird cherry-oat aphid (Rhopalosiphum padi L.) on wheat. A strong diurnal rhythm in aphids as indicated by the presence of a cyclical pattern of expression in a core clock gene did not impact aphid feeding and similar feeding behaviors were observed during day and night. The major difference observed between day and night feeding was that aphids spent significantly longer time in phloem salivation during the night compared to the day. In contrast, aphid hydration was reduced at the end of the day-time feeding compared to end of the night-time feeding. Gene expression analysis of R. padi osmoregulatory genes indicated that sugar breakdown and water transport into the aphid gut was reduced at night. These data suggest that while diurnal variation occurs in phloem sap composition, aphids use night-time feeding to overcome the high osmotic stress incurred while feeding on sugar-rich phloem sap during the day.


Subject(s)
Aphids/physiology , Herbivory , Osmoregulation , Animals , Circadian Rhythm , Diet , Triticum/growth & development
15.
Curr Opin Insect Sci ; 45: 21-27, 2021 06.
Article in English | MEDLINE | ID: mdl-33249178

ABSTRACT

Wheat curl mite (WCM) is the only known arthropod vector of four wheat viruses, the most important of which is Wheat streak mosaic virus (WSMV). Host resistance to WCM and WSMV is limited to a small number of loci, most of which are introgressed from wild relatives and are often associated with linkage drag and temperature sensitivity. Reports of virulent WCM populations and potential resistance-breaking WSMV isolates highlight the need for more diverse sources of resistance. Genome sequencing will be critical to fully characterize the genetic diversity in WCM and WSMV populations to better understand the incidence of WCM-transmitted viruses and to evaluate the potential stability of resistance genes. Characterizing host resistance genes will help build a mechanistic understanding of wheat-WCM-WSMV interactions and inform strategies to identify and engineer more durable resistance sources.


Subject(s)
Antibiosis/genetics , Mites/physiology , Plant Defense Against Herbivory/genetics , Plant Diseases/virology , Potyviridae/physiology , Triticum/physiology , Animals , Triticum/genetics
16.
Front Plant Sci ; 11: 575564, 2020.
Article in English | MEDLINE | ID: mdl-33424878

ABSTRACT

Several plant viruses modulate vector fitness and behavior in ways that may enhance virus transmission. Previous studies have documented indirect, plant-mediated effects of tomato spotted wilt virus (TSWV) infection on the fecundity, growth and survival of its principal thrips vector, Frankliniella occidentalis, the western flower thrips. We conducted thrips performance and preference experiments combined with plant gene expression, phytohormone and total free amino acid analyses to determine if systemically-infected tomato plants modulate primary metabolic and defense-related pathways to culminate into a more favorable environment for the vector. In a greenhouse setting, we documented a significant increase in the number of offspring produced by F. occidentalis on TSWV-infected tomato plants compared to mock-inoculated plants, and in choice test assays, females exhibited enhanced settling on TSWV-infected leaves. Microarray analysis combined with phytohormone signaling pathway analysis revealed reciprocal modulation of key phytohormone pathways under dual attack, possibly indicating a coordinated and dampening defense against the vector on infected plants. TSWV infection, alone or in combination with thrips, suppressed genes associated with photosynthesis and chloroplast function thereby significantly impacting primary metabolism of the host plant, and hierarchical cluster and network analyses revealed that many of these genes were co-regulated with phytohormone defense signaling genes. TSWV infection increased expression of genes related to protein synthesis and degradation which was reflected in the increased total free amino acid content in virus-infected plants that harbored higher thrips populations. These results suggest coordinated gene networks that regulate plant primary metabolism and defense responses rendering virus-infected plants more conducive for vector colonization, an outcome that is potentially beneficial to the vector and the virus when considered within the context of the complex transmission biology of TSWV. To our knowledge this is the first study to identify global transcriptional networks that underlie the TSWV-thrips interaction as compared to a single mechanistic approach. Findings of this study increase our fundamental knowledge of host plant-virus-vector interactions and identifies underlying mechanisms of induced host susceptibility to the insect vector.

17.
Front Microbiol ; 10: 431, 2019.
Article in English | MEDLINE | ID: mdl-30941106

ABSTRACT

Soybean vein necrosis virus (SVNV) is a newly discovered species of tospovirus infecting soybean plants that is transmitted by the primary vector, soybean thrips (Neohydatothrips variabilis), and two additional secondary vectors, tobacco thrips (Frankliniella fusca) and eastern flower thrips (F. tritici). This study was undertaken to elucidate the association between virus acquisition [6, 12, 24, and 48 h acquisition access period (AAP)] and transmission efficiency [12, 24, and 48 h inoculation access period (IAP)] in the primary vector, N. variabilis, and to examine the mechanisms of vector competence by analyzing the effect of AAP (6, 12, and 24 h) on virus infection in various tissues. In addition, we examined virus infection in tissues of the two secondary vectors. We found a significant effect of virus acquisition on transmission efficiency, transmission rate post 6 and 48 h AAP was significantly lower than 12 and 24 h AAP. Our analysis did not reveal a correlation between virus transmission rate and virus RNA in corresponding N. variabilis adults. On the contrary, N. variabilis adults harboring higher accumulation of the virus (>104) resulted in lower transmission rates. Analysis of SVNV infection in the tissues revealed the presence of the virus in the foregut, midgut (region 1, 2, and 3), tubular salivary glands and principal salivary glands (PSG) of adults of all three vector species, however, the frequency of infected tissues was highest in N. variabilis followed by F. fusca and F. tritici. The frequency of SVNV infection in individual tissues specifically the salivary glands was lowest after 6 h AAP compared to 12 and 24 h AAP. This finding is in agreement with the transmission assays, where significantly lower virus transmission rate was observed post 6 h AAP. In addition, N. variabilis adults with high PSG infection (12 and 24 h AAP) were likely to have high percentage of foregut and midgut region 2 infection. Overall, results from the transmission assays and immunolabeling experiments suggest that shorter AAP results in reduced virus infection in the various tissues especially PSG, which are important determinants of vector competence in SVNV-thrips interaction.

18.
Environ Entomol ; 47(3): 734-740, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29506040

ABSTRACT

Thrips-infesting soybeans were considered of minor economic importance, but recent evidence of their ability to transmit a newly identified soybean virus, Soybean vein necrosis virus (SVNV), has raised their profile as pests. Season-long surveys were conducted using suction traps to determine the effects of temperature and precipitation on the spatiotemporal patterns of three vector species of SVNV, Neohydatothrips variabilis (Beach) (Thysanoptera: Thripidae) (soybean thrips), Frankliniella tritici (Fitch) (Thysanoptera: Thripidae) (eastern flower thrips), and Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) (tobacco thrips) in soybean fields in Indiana in 2013 and 2014. In addition, soybean fields were surveyed for presence of SVNV in both years. We found that the magnitude and timing of thrips activity varied greatly for the three species. N. variabilis activity peaked in mid-August each year. The peak activity for F. tritici occurred between late-June, and a second peak in activity was observed in early-August, while F. fusca activity remained more or less the same with no peak. There was no gradient in thrips populations from southern to northern locations. This suggests that these insects are not migratory and may overwinter in soil or perennial noncrop host plants and other weed hosts in Indiana. The capture rates of N. variabilis and F. tritici were only related to temperature, and capture rates of F. fusca were not related to either variable. SVNV was first detected in mid-late August, which coincided with the peak of the primary vector, N. variabilis. The virus was not detected earlier in the season despite peaks in F. tritici activity. Our results may be used in weather-based models to predict both thrips dynamics as well as SVNV outbreaks.


Subject(s)
Glycine max/virology , Plant Diseases/virology , Thysanoptera/physiology , Tospovirus/physiology , Animals , Indiana , Population Dynamics , Seasons , Species Specificity , Thysanoptera/virology
19.
J Econ Entomol ; 109(5): 1979-87, 2016 10.
Article in English | MEDLINE | ID: mdl-27417640

ABSTRACT

Soybean vein necrosis virus (SVNV) is an emerging Tospovirus that is now considered to be the most widespread soybean virus in the United States. SVNV is transmitted from plant-to-plant by soybean thrips, Neohydatothrips variabilis (Beach). We hypothesized that a positive interaction between the host plant, SVNV, and the vector may have resulted in the widespread distribution of the virus in a short span of time. Our study found that SVNV-infected N. variabilis females produced significantly more offspring compared with non-infected females. No other life-history trait varied between SVNV-infected and non-infected thrips. There was considerable variation in SVNV copy number in infected thrips ranging from 10(2) -10(6) Moreover, there was a significant negative correlation between SVNV copy number and fecundity in infected N. variabilis This suggests that excessive virus accumulation may result in lower viability of N. variabilis In choice tests, SVNV-infected N. variabilis preferred to feed on non-infected leaflets compared with infected leaflets. Vector competence assays indicated that Frankliniella tritici and Frankliniella fusca can transmit SVNV, but at a lower efficiency than N. variabilis Comparison of life history of between the primary and secondary vectors showed that N. variabilis had the highest fecundity, but F. tritici had the shortest development time and greatest larval survival. Taken together, the increased fecundity of SVNV-infected N. variabilis, their apparent preference for non-infected host plants, in conjunction with the ability of secondary vectors to survive and reproduce on soybean may, in part, explain the rapid spread of SVNV in the United States.


Subject(s)
Glycine max/virology , Plant Diseases/virology , Thysanoptera/physiology , Thysanoptera/virology , Tospovirus/physiology , Animals , Larva/growth & development , Larva/physiology , Larva/virology , Life History Traits , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Thysanoptera/growth & development
20.
Front Plant Sci ; 7: 552, 2016.
Article in English | MEDLINE | ID: mdl-27200027

ABSTRACT

Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid densities under drought and their decrease under saturation. Taken together, our findings suggests that plant responses to water stress is complex involving changes in phloem amino acid composition and signaling pathways, which can impact aphid populations and virus transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...