Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 23(6): 1041-1050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714585

ABSTRACT

Near-infrared two-photon absorption and excited state dynamics of a fluorescent diarylethene (fDAE) derivative were investigated by time-resolved absorption and fluorescence spectroscopies. Prescreening with quantum chemical calculation predicted that a derivative with methylthienyl groups (mt-fDAE) in the closed-ring isomer has a two-photon absorption cross-section larger than 1000 GM, which was experimentally verified by Z-scan measurements and excitation power dependence in transient absorption. Comparison of transient absorption spectra under one-photon and simultaneous two-photon excitation conditions revealed that the closed-ring isomer of mt-fDAE populated into higher excited states deactivates following three pathways on a timescale of ca. 200 fs: (i) the cycloreversion reaction more efficient than that by the one-photon process, (ii) internal conversion into the S1 state, and (iii) relaxation into a lower state (S1' state) different from the S1 state. Time-resolved fluorescence measurements demonstrated that this S1' state is relaxed to the S1 state with the large emission probability. These findings obtained in the present work contribute to extension of the ON-OFF switching capability of fDAE to the biological window and application to super-resolution fluorescence imaging in a two-photon manner.

2.
Chemphyschem ; 21(14): 1485, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32672424

ABSTRACT

The front cover artwork is provided by the groups of Prof. Hiroshi Miyasaka (Osaka University, Japan), Prof. Masahiro Irie (Rikkyo University, Japan), Prof. Seiya Kobatake (Osaka City University, Japan) and Prof. Akira Sakamoto (Aoyama Gakuin University, Japan). The image shows the coherently vibrating closed form of a photochromic diarylethene derivative in the excited state, and subsequent structural evolution into the open form in the cycloreversion reaction. Read the full text of the Article at 10.1002/cphc.202000315.

3.
Chemphyschem ; 21(14): 1524-1530, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32489017

ABSTRACT

The geometrical evolution of the reactant and formation of the photoproduct in the cycloreversion reaction of a diarylethene derivative were probed using time-resolved absorption spectroscopies in the visible to near-infrared and mid-infrared regions. The time-domain vibrational data in the visible region show that the initially formed Franck-Condon state is geometrically relaxed into the minimum in the excited state potential energy surface, concomitantly with the low-frequency coherent vibrations. Theoretical calculations indicate that the nuclear displacement in this coherent vibration is nearly parallel to that in the geometrical relaxation. Time-resolved mid-infrared spectroscopy directly detected the formation of the open-ring isomer with the same time constant as the decrease of the closed-ring isomer in the excited state minimum. This observation reveals that no detectable intermediate, in which the population is accumulated, is present between the excited closed-ring isomer and the open-ring isomer in the ground state.

4.
J Chem Phys ; 152(3): 034301, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31968954

ABSTRACT

Dynamics of the cycloreversion reaction of a photochromic diarylethene derivative with a small ring-opening reaction yield (∼1%) was investigated by using femtosecond transient absorption spectroscopy. The reaction rate constant and activation barrier on the reaction coordinate were quantitatively analyzed on the basis of the temperature and excitation wavelength dependencies of the reaction yield and excited state dynamics. From the comparison of the present results with those in a more reactive derivative, we concluded that a key factor regulating the overall reaction yield is the branching ratio at the conical intersection where the excited state population is split into the product and the initial reactant. The excitation wavelength dependence of the dynamics indicated that the geometrical relaxation and vibrational cooling proceed in a few picosecond time scale behind the cycloreversion process, and the vibrational excess energy assists the molecule to climb up the energy barrier.

5.
RSC Adv ; 10(34): 20038-20045, 2020 May 26.
Article in English | MEDLINE | ID: mdl-35520419

ABSTRACT

The electrocyclic reaction dynamics of a photochromic dithiazolylarylene derivative, 2,3-dithiazolylbenzothiophene (DTA) was investigated by using time-resolved transient absorption and fluorescence spectroscopies. The closed-ring isomer of DTA undergoes cycloreversion through the conical intersection mediating the potential energy surfaces of the excited and ground states, which is in agreement with the Woodward-Hoffmann rules for the electrocyclic reactions of 6π electron systems. On the other hand, a large portion of the open-ring isomer undergoes cyclization along the distinct reaction scheme, in which the cyclization takes place in the excited state manifold leading to the formation of the excited state of the closed-ring isomer. The suppression of the geometrical motion of DTA due to the intramolecular interaction could open a new efficient reaction pathway resulting in the formation of the electronically excited state of the product.

6.
Angew Chem Int Ed Engl ; 58(38): 13308-13312, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31304638

ABSTRACT

The design of an object transportation system exploiting the bending behavior of surface-assembled diarylethene crystals is reported. A photoactuated smart surface based on this system can transport polystyrene beads to a desired area depending on the direction of the incident light. Two main challenges were addressed to accomplish directional motion along a surface: first, the preparation of crystals whose bending behavior depends on the direction of incident light; second, the preparation of a film on which these photochromic crystal plates are aligned. Nuclei generation and nuclear growth engineering were achieved by using a roughness-controlled dotted microstructured substrate. This system demonstrates how to achieve a mechanical function as shown by remote-controlled motion along a surface.

7.
Phys Chem Chem Phys ; 20(30): 19776-19783, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29876548

ABSTRACT

The one- and two-photon cycloreversion reactions of a fluorescent diarylethene derivative with oxidized benzothiophene moieties were investigated by means of ultrafast laser spectroscopy. Femtosecond transient absorption spectroscopy under the one-photon excitation condition revealed that the excited closed-ring isomer is simply deactivated into the initial ground state with a time constant of 2.6 ns without remarkable cycloreversion, the results of which are consistent with the very low cycloreversion reaction yield (<10-5) under steady-state light irradiation. On the other hand, an efficient cycloreversion reaction was observed under irradiation with a picosecond laser pulse at 532 nm. The excitation intensity dependence of the cycloreversion reaction indicates that a highly excited state attained by the stepwise two-photon absorption is responsible for the marked increase of the cycloreversion reaction, and the quantum yield at the highly excited state was estimated to be 0.018 from quantitative analysis, indicating that the reaction is enhanced by a factor of >1800.

8.
J Am Chem Soc ; 139(47): 17159-17167, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29110473

ABSTRACT

Two-color, two-pulse femtosecond pulsed excitation was applied to the elucidation of the dynamics and mechanism of cycloreversion reaction of a diarylethene derivative in the higher excited states. Transient absorption spectroscopy under one-photon visible excitation revealed that the 1B state produced by the excitation undergoes the internal conversion into the 2A state with a time constant of 200 fs. Geometrical rearrangement of the 2A state takes place concomitantly with the vibrational cooling with a time constant of 3 ps. The resultant 2A state undergoes the transition into the conical intersection point in competition with nonradiative as well as radiative deactivation into the ground state with a time constant of 12 ps. The second pulse excitation of the 2A state, especially the geometrically relaxed 2A state, led to the significant enhancement of the cycloreversion reaction through the large reaction quantum yield of ca. 50-90% in the higher excited state (Sn state), while the excitation of the 1B state, leading to the Sn' state, did not induce such enhancement. By integrating with the excitation wavelength dependence of the second pump laser pulse, we discussed the chemical reactivity of diarylethene derivatives in terms of the symmetry of the electronic states.

9.
J Phys Chem Lett ; 8(14): 3272-3276, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28677972

ABSTRACT

Off-resonant excitation of the closed-ring isomer of a photochromic diarylethene derivative at 730 nm induced the efficient cycloreversion reaction with a yield of ∼20%, while the reaction yield was only 2% under one-photon excitation at 365 nm. Excitation wavelength dependence of the one-photon cycloreversion reaction yield under steady-state irradiation in a wide wavelength range showed that the specific electronic state leading to the large cycloreversion reaction yield, which is originally forbidden in the optical transition but partially allowed owing to the low symmetry of the molecule, is spectrally overlapped with the electronic state accessible by the allowed one-photon optical transition in the UV region. Femtosecond transient absorption spectroscopy also revealed that the off-resonant two-photon excitation preferentially pumped the molecule into the specific state, leading to the 10-fold enhancement of the cycloreversion reaction.

SELECTION OF CITATIONS
SEARCH DETAIL