Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(13): 11880-11888, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033858

ABSTRACT

This study describes the synthesis of graphene oxide-modified magnetite (rGO/Fe3O4) and its use as an electrochemical sensor for the quantitative detection of hemoglobin (Hb). rGO is characterized by a 2θ peak at 10.03° in its X-ray diffraction, 1353 and 1586 cm-1 vibrations in Raman spectroscopy, while scanning electron microscopy coupled with energy-dispersive spectroscopy of rGO and rGO/Fe3O4 revealed the presence of microplate structures in both materials and high presence of iron in rGO/Fe3O4 with 50 wt %. The modified graphite pencil electrode, GPE/rGO/Fe3O4, is characterized using cyclic voltammetry. Higher electrochemical surface area is obtained when the GPE is modified with rGO/Fe3O4. Linear scan voltammetry is used to quantify Hb at the surface of the sensor using ferrocene (FC) as an electrochemical amplifier. Linear response for Hb is obtained in the 0.1-1.8 µM range with a regression coefficient of 0.995, a lower limit of detection of 0.090 µM, and a limit of quantitation of 0.28 µM. The sensor was free from interferents and successfully used to sense Hb in human urine. Due to the above-stated qualities, the GPE/rGO/Fe3O4 electrode could be a potential competitive sensor for trace quantities of Hb in physiological media.

2.
Chem Zvesti ; 76(1): 111-121, 2022.
Article in English | MEDLINE | ID: mdl-34483461

ABSTRACT

Because of the scale of the novel coronavirus (COVID-19) pandemic and the swift transmission of this highly contagious respiratory virus, repurposing existing drugs has become an urgent treatment approach. The objective of our study is to unravel the binding mechanism of the Food and Drug Administration (FDA)-approved dexamethasone (Dex) and boceprevir (Boc) drugs with selected COVID-19 protein targets SARS-CoV-2 spike protein C-terminal domain (spike-CTD), main protease (Mpro), and interleukin-6 (IL-6). Another objective is to analyze the effects of binding Dex and Boc drugs on the interactions of viral spike protein to human angiotensin-converting enzyme 2 (hACE2). Molecular docking and one-microsecond-long molecular dynamics simulations of each of the six protein-drug complexes along with steered molecular dynamics (SMD) and umbrella sampling (US) methods have revealed the binding mode interactions and the physicochemical stability of the three targeted proteins with two drugs. Results have shown that both drugs bind strongly with the three protein targets through hydrogen bonding and hydrophobic interactions. A major finding from this study is how the binding of the drugs with viral spike protein affects its interactions at the binding interface with hACE2 protein. Simulations of drug-bound spike-CTD with hACE2 show that due to the presence of a drug at the binding interface of spike-CTD, hACE2 is being blocked from making putative interactions with viral protein at such interface. These important findings regarding the binding affinity and stability of the two FDA-approved drugs with the main targets of COVID-19 along with the effect of drugs on hACE2 interactions would contribute to COVID-19 drug discovery and development. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-021-01843-0.

3.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34443730

ABSTRACT

The ß-cyclodextrin shell of synthesized silver nanoparticles (ßCD-AgNPs) are found to enhance the detection of hydrogen peroxide in urine when compared to the Horse Radish Peroxidase assay kit. Nanoparticles are confirmed by the UV-Vis absorbance of their localized surface plasmonic resonance (LSPR) at 384 nm. The mean size of the ßCD-AgNPs is 53 nm/diameter; XRD analysis shows a face-centered cubic structure. The crystalline structure of type 4H hexagonal nature of the AgNPs with 2.4 nm ß-CD coating onto is confirmed using aberration corrected high-resolution transmission electron microscopy (HRTEM). A silver atomic lattice at 2.50 Å and 2.41 Å corresponding to (100) and (101) Miller indices is confirmed using the HRTEM. The scope of ßCD-AgNPs to detect hydrogen peroxide (H2O2) in aqueous media and human urine is investigated. The test is optimized by examining the effect of volumes of nanoparticles, the pH of the medium, and the kinetic and temperature effect on H2O2 detection. The ßCD-AgNPs test is used as a refined protocol, which demonstrated improved sensitivity towards H2O2 in urine compared to the values obtained by the Horse Radish Assay kit. Direct assessment of H2O2 by the ßCD-AgNPs test presented always with a linear response in the nM, µM, and mM ranges with a limit of detection of 1.47 nM and a quantitation limit of 3.76 nM. While a linear response obtained from 1.3 to 37.3 nmoles of H2O2/mole creatinine with a slope of 0.0075 and regression coefficient of 0.9955 when the ßCD-AgNPs is used as refined test of creatinine. Values ranging from 34.62 ± 0.23 nmoles of H2O2/mole of creatinine and 54.61 ± 1.04 nmoles of H2O2/mole of creatinine when the matrix is not diluted and between 32.16 ± 0.42 nmoles of H2O2/mole of creatinine and 49.66 ± 0.80 nmoles of H2O2/mole of creatinine when the matrix is twice diluted are found in freshly voided urine of seven apparent healthy men aged between 20 and 40 years old.

4.
J Phys Chem B ; 125(28): 7750-7762, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34232651

ABSTRACT

Nitric oxide-containing drugs present a critical remedy for cardiovascular diseases. Nitroglycerin (NG, O-NO) and S-nitrosoglutathione (SNG, S-NO) are the most common nitric oxide drugs for cardiovascular diseases. Insights regarding the binding affinity of NO drugs with lysozyme and human serum albumin (HSA) proteins and their dissociation mechanism will provide inquisitive information regarding the potential of the proteins as drug carriers. For the first time, the binding interactions and affinities are investigated using molecular docking, conventional molecular dynamics, steered molecular dynamics, and umbrella sampling to explore the ability of both proteins to act as nitric oxide drug carriers. The molecular dynamics simulation results showed higher stability of lysozyme-drug complexes compared to HSA. For lysozyme, cardiovascular drugs were bound in the protein cavity mainly by the electrostatic and hydrogen bond interactions with residues ASP53, GLN58, ILE59, ARG62, TRP64, ASP102, and TRP109. For HSA, key binding residues were ARG410, TYR411, LYS414, ARG485, GLU450, ARG486, and SER489. The free energy profiles produced from umbrella sampling also suggest that lysozyme-drug complexes had better binding affinity than HSA-drug. Binding characteristics of nitric oxide-containing drugs NG and SNG to lysozyme and HSA proteins were studied using fluorescence and UV-vis absorption spectroscopy. The relative change in the fluorescence intensity as a function of drug concentrations was analyzed using Stern-Volmer calculations. This was also confirmed by the change in the UV-vis spectra. Fluorescence quenching results of both proteins with the drugs, based on the binding constant values, demonstrated significantly weak binding affinity to NG and strong binding affinity to SNG. Both computational and experimental studies provided important data for understanding protein-drug interactions and will aid in developing potential drug carrier systems in cardiovascular diseases.


Subject(s)
Cardiovascular Agents , Muramidase , Binding Sites , Circular Dichroism , Drug Carriers , Humans , Molecular Docking Simulation , Nitric Oxide , Protein Binding , Serum Albumin/metabolism , Serum Albumin, Human/metabolism , Spectrometry, Fluorescence , Thermodynamics
5.
Amino Acids ; 52(9): 1353-1362, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33006112

ABSTRACT

Carboxyl-modified substrates are the most common chemical moieties that are frequently used as protein defibrillators. We studied the stability of protein-benzoic acid complexes with bovine serum albumin (BSA), zein and lysozyme proteins using various computational methods. Structural model for zein was built using homology modelling technique and molecular docking was used to prepare complex structures of all three proteins with benzoic acid. Molecular dynamics calculations performed on these complex structures provided a strong support for the stability of protein-benzoic acid complexes. The results from various analyses including root-mean-square deviation (RMSD) and radius of gyration showed the stability and compactness of all proteins-benzoic acid complexes. Moreover, exploration of structural fluctuations in proteins revealed the stability of active site residues. Two potential binding modes of benzoic acid with all three proteins were identified via cluster analysis. The binding mode which was retrieved from top cluster containing 86-91% of total conformations displayed very strong binding interactions for zein, BSA and lysozyme proteins. In addition, the results of binding mode showed that various interactions, including hydrogen binding, hydrophobic and electrostatic interactions were important for the optimal binding of benzoic acid with the active sites of proteins. Exploration of solvent accessible surface area showed that lysozyme-binding cavity was more exposed to the surface as compared to the other two proteins. Free energy analysis of all protein systems showed the stability of protein-benzoic acid complexes with lysozyme and BSA relatively more stable than zein system. The results of our study provided important insights to the dynamic and structural information about protein-benzoic acid interactions with BSA, zein and lysozyme proteins. This work is important in enhancing the stability of therapeutic protein drugs loaded on carboxyl substrates.


Subject(s)
Benzoic Acid/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Muramidase/metabolism , Serum Albumin, Bovine/metabolism , Zein/metabolism , Animals , Benzoic Acid/chemistry , Binding Sites , Catalytic Domain , Cattle , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Muramidase/chemistry , Protein Binding , Serum Albumin, Bovine/chemistry , Zein/chemistry
6.
Nanomaterials (Basel) ; 10(9)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957557

ABSTRACT

A green and cost-effective technique for the preparation of silver nanoparticles (Algae-AgNPs) as a colorimetric sensor for hydrogen peroxide (H2O2) is described. Silver nanoparticles were capped using the green algae (Noctiluca scintillans) extract at an optimum time of 3 h at 80 °C. The pH of the plant extract (pH = 7.0) yields nanoparticles with a mean size of 4.13 nm and a zeta potential of 0.200 ± 0.02 mV and negative polarity, using dynamic light scattering (DLS). High-resolution transmission electron microscopy (HRTEM) analysis showed regular spherical particles with the average size of 4.5 nm. Selected area electron diffraction (SAED) results revealed the polycrystalline nature of the silver nanoparticles. The obtained patterns were indexed as (111), (200), (220), and (311) reflections of the fcc (face centered cubic) silver crystal based on their d-spacing of 2.47, 2.13, 1.49, and 1.27 Å, respectively. The apparent color change from brown to colorless was observed when nanoparticles reacted with H2O2. Linear responses were obtained in three different ranges (nM, µM, and mM). Limits of detection (LOD) of 1.33 ± 0.02 and 1.77 ± 0.02 nM and quantitation limits (LOQ) of 7.31 ± 0.03 and 9.67 ± 0.03 nM were obtained for Abs and ΔAbs calibration curves, respectively. 10% v/v Algae-AgNPs solution inhibited Staphylococcus aureus over Escherichia coli, while a 50% reduction of tumor cell growth of MDA-MB-231 human breast adenocarcinoma was obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...