Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Physiol Biochem ; 49(3): 529-542, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37138041

ABSTRACT

Supplementation of phosphorus nanoparticles is a promising strategy to reduce water pollution, improve phosphorus concentration in fish diet, and provide better production quality. We used 300 fingerlings of Nile tilapia that were randomly distributed into 3 groups; each one was attributed to 5 replicates of 20 fish per aquarium with initial weight (gm) (156 ± 1.25). The first diet contained traditional Di-calcium phosphate (D-group), the second supplemented with phosphorus nanoparticles in a dose equal to the previous conventional one (N-D group), and the last one included with phosphorus nanoparticles with the half dose of the conventional phosphorus group (1/2 N-D group). After 3 months of feeding, the N-D group showed the best growth performance including its feed conversion ratio (FCR), feed intake (FI), or body weight gain (BWG). Furthermore, the growth-related gene expression findings considering growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1) were upregulated as well. Moreover, whole body chemical composition revealed higher Fe, Zn, P, and crude protein level in the N-D group than the other two groups. Lipoprotein lipase (LPL) and fatty acid synthetase (FAS) mRNA expression showed a significant increase in 1/2 N-D and N-D groups compared with the control group. To sum up, using of nano-phosphorus particles improved the growth rate and immunity response of Nile tilapia, besides decreasing water pollution.


Subject(s)
Cichlids , Fish Diseases , Animals , Cichlids/metabolism , Phosphorus , Diet/veterinary , Dietary Supplements , Eating , Animal Feed/analysis
2.
Fish Physiol Biochem ; 48(3): 767-783, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35488986

ABSTRACT

A 95-day feeding trial was conducted to evaluate the outcomes of feeding Bacillus subtilis fermented Azolla (BSFA) on nonspecific immunity, antioxidative status, intestinal digestive enzymes and histomorphometry, and disease resistance in the Nile tilapia. We formulated five isonitrogenous and isocaloric experimental diets to incorporate BSFA at level of (0%, 15%, 30%, 45%, 60%). The growth performance parameters (FBW, BWG, SGR, PER, and FCR) revealed a significant increase in the BSFA30 tilapia group compared to the control group followed by BSFA45 (P < 0.05). The BSFA30 group exhibited the highest nonspecific immunity parameters including (lysozyme activity, phagocytic index, and phagocytic activity) compared to other groups (P < 0.05). SOD and GPx reported the highest values in the BSFA60 group. Nile tilapia carcass composition was not influenced by BSFA inclusion level (P > 0.05). Interestingly, Nile tilapia fed with BSFA15 diet exhibited the highest protease activity level (P < 0.05), while those fed on BSFA30 documented the highest amylase activity. Intestinal histomorphology was significantly enhanced with the gradual increase of administrated BSFA. Regarding the tilapia disease resistance against Aeromonas septicemia, BSFA significantly diminished the cumulative mortality compared to the control group. To sum up, BSFA was more effective in improving the growth performance and immunity of Nile tilapia.


Subject(s)
Cichlids , Fish Diseases , Animal Feed/analysis , Animals , Antioxidants , Bacillus subtilis , Diet/veterinary , Dietary Supplements , Disease Resistance
3.
Trop Anim Health Prod ; 54(2): 98, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35141787

ABSTRACT

The purpose of this study was to examine the effect of dietary supplementation with methyl methionine sulfonium chloride (MMSC), and L-carnitine (L-CAR) alone or in combination on the growth performance of broilers through their impact on the expression of IGF-1 and MSTN genes associated with growth in broilers. One-day-old female Ross 308 broiler chicks were allocated into four groups, each of which received a broiler starter diet and water daily ad libitum. The control group (group 1) was given drinking water without any additives. Group 2 received 0.25 g L-carnitine per liter of drinking water, group 3 received 0.25 g MMSC per liter of drinking water, and group 4 received 0.25 g of both L-carnitine and MMSC per liter of drinking water. Birds were given a starter diet to 21 days after which they received a broiler grower diet to 35 days when the experiment ended. There were five replicate groups of 12 birds per treatment. Body weights and feed intake were recorded weekly. Compared to the control group of birds, supplementation with MMSC either alone or in combination with L-carnitine resulted in an increase in growth rate or feed utilization efficiency; L-carnitine by itself had no effect. MMSC supplementation, again either alone or in combination with L-carnitine, increased jejunal and ileal villi height, increased serum total proteins and globulins, downregulated myostatin (MSTN) mRNA, and upregulated insulin growth factor-1 (IGF-1) mRNA expression. Supplementation with L-carnitine alone showed none of these effects. We conclude that MMSC supplementation improved growth performance through the upregulation of IGF-1 mRNA expression and downregulation of MSTN mRNA expression.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Insulin-Like Growth Factor I , Myostatin/genetics , Vitamin U , Animal Feed/analysis , Animals , Carnitine , Chickens/genetics , Chickens/growth & development , Chlorides , Diet/veterinary , Dietary Supplements , Female , Insulin , Insulin-Like Growth Factor I/genetics , Methionine/analogs & derivatives
4.
Biol Trace Elem Res ; 200(12): 5226-5241, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35028868

ABSTRACT

This study investigates the effects of different sources of selenium (inorganic (SSE), organic (OSE), and elemental nano-selenium (NSE)) on the performance of Nile tilapia (Oreochromis niloticus). In total, 204 Nile tilapia fingerlings were randomly divided into 4 equal groups fed 1 of 4 diets: a control (adding no selenium) and 3 diets as selenium sources (1 mg/kg diet), After a 65-day feeding trial, the growth performance parameters of Nile tilapia were significantly enhanced by dietary selenium supplementation (P < 0.05), with the highest values recorded in the OSE- and NSE-supplemented groups. The selenium-supplemented groups had the highest packed-cell volume, hemoglobin, and red blood cell levels, with the highest values seen in the NSE-supplemented group (P < 0.05). Innate immune-related enzymes and immunoglobulin levels were significantly enhanced with selenium supplementation (P < 0.05); the NSE group demonstrated the highest significant levels of these enzyme activities (P < 0.05). In all selenium-supplemented groups, malondialdehyde levels were significantly and equally reduced (P < 0.05) compared with levels in the control. Bactericidal activity was only enhanced in the NSE group (P < 0.05) compared with other treatments. The expression of TNF-α and IL-Iß genes was significantly upregulated in selenium-supplemented groups, with the highest expression in the OSE and NSE groups (P < 0.05). These findings support the importance of incorporating selenium in the diet of Nile tilapia. Furthermore, elementary nano-selenium is more effective than inorganic or organic selenium supplementation at improving Nile tilapia growth performance and overall health.


Subject(s)
Cichlids , Selenium , Animal Feed/analysis , Animals , Diet , Dietary Supplements , Gene Expression , Immunoglobulins/genetics , Malondialdehyde , Oxidative Stress , Selenium/pharmacology , Tumor Necrosis Factor-alpha/genetics
5.
Animals (Basel) ; 11(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34438887

ABSTRACT

The present study aimed to assess the in ovo administration of clenbuterol on chick fertility, growth performance, muscle growth, myogenic gene expression, fatty acid, amino acid profile, intestinal morphology, and hepatic lipid-related gene expressions. In this study, 750 healthy fertile eggs from the local chicken breed Dokki-4 strain were analyzed. Fertile eggs were randomly divided into five experimental groups (150 eggs/3 replicates for each group). On day 14 of incubation, in addition to the control group, four other groups were established where 0.5 mL of worm saline (30 °C) was injected into the second group of eggs. In the third, fourth, and fifth groups, 0.5 mL of worm saline (30 °C), 0.9% of NaCl, and 10, 15, and 20 ppm of clenbuterol were injected into the eggs. Results suggested that clenbuterol increased growth efficiency up to 12 weeks of age, especially at 15 ppm, followed by 10 ppm, decreased abdominal body fat mass, and improved hatchability (p < 0.01). Clenbuterol also modulated saturated fatty acid levels in the breast muscles and improved essential amino acids when administered at 10 and 15 ppm. Additionally, clenbuterol at 15 ppm significantly decreased myostatin gene expression (p < 0.01) and considerably increased IGF1r and IGF-binding protein (IGFBP) expression. Clenbuterol administration led to a significant upregulation of hepatic PPARα, growth hormone receptor, and Lipoprotein lipase (LPL) mRNA expression with a marked decrease in fatty acid synthase (FAS) and sterol regulatory element-binding protein 1 (SREBP-1c) expression. In conclusion, the current study revealed that in ovo injection of clenbuterol showed positive effects on the growth of hatched chicks through reduced abdominal fat deposition, improved intestinal morphology, and modulation of hepatic gene expressions in myogenesis, lipogenesis, and lipolysis.

6.
Fish Shellfish Immunol ; 117: 299-310, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34274421

ABSTRACT

Fermentation strategy is well documented to improve the nutritional value of agricultural waste by-products such olive cake (OC), which, in turn, provides healthy, safe, and affordable feedstuff. This study assessed the combined impact of Aspergillus oryzae-fermented OC (AFOC) on the growth performance, intestinal morphometry, blood biochemistry, lysozyme activity, gut immune-related genes, and flesh quality of Nile tilapia. We divided 225 fish into five groups and further subdivided into three replicates (n = 15 each) and fed them five diets (Control, AFOC5, AFOC10, AFOC15, AFOC20) to determine AFOC nutritional value and its optimized incorporation level in the diet. The trial continued for 3 months. The crude protein content of OC improved by 7.77% after A. oryzae fermentation, while lipid content decreased by 14.19%. In addition, growth and feed utilization significantly improved at (10.8-11.2) % AFOC dietary level. High-density lipoprotein (HDL) significantly improved, and the serum lysozyme level was significantly higher in the AFOC10 group compared to other groups. Interestingly, gut-related inflammatory cytokines tumor necrosis factor alpha (TNF- α) and interleukin 1 beta (IL-1ß) revealed higher relative mRNA expression in the AFOC10 group compared to other groups. The histomorphometric parameters was greatly influenced by the AFOC incorporation level (10%-20%). These findings suggested that A. orzae fermentation modifies the nutritional quality of OC, as seen through its positive impact on the growth performance, local and systemic immunity, and intestinal absorptive capacity of Nile tilapia. The recommended dose for dietary AFOC was around 11.


Subject(s)
Aspergillus oryzae , Cichlids , Dietary Supplements , Olea , Animals , Biological Assay , Cichlids/blood , Cichlids/genetics , Cichlids/growth & development , Cichlids/immunology , Cytokines/genetics , Fermentation , Gene Expression , Hematologic Tests , Intestines/anatomy & histology , Intestines/immunology , Lipoproteins, HDL/blood , Muramidase/immunology , Nutritive Value
7.
Environ Sci Pollut Res Int ; 27(30): 37677-37683, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32608001

ABSTRACT

The study aimed to investigate the effect of Se sources and concentrations on performance, thyroid activity, antioxidant defense, and functional egg quality of Japanese quail. One hundred and twenty, 8-week-old birds were randomly assigned to 1 of 4 dietary treatments in 3 replicates (10 birds/replicate). The treatments contained inorganic sodium selenite (SS) at 0.2 mg/kg diet (SS1 = control) or 0.4 mg/kg diet (SS2) or selenomethionine (SM) at 0.2 mg/kg diet (SM1) or 0.4 mg/kg diet (SM2). Egg production (%) and feed intake were daily recorded, and feed conversion ratio (FCR) was calculated. Blood samples were collected and analyzed for glucose, thyroxine (T4), triiodothyronine (T3), glutathione peroxidase (GPX), and superoxide dismutase (SOD) enzymes. Egg quality was determined in terms of Se content and concentrations of triglycerides, LDL, HDL, and cholesterol. Dietary supplementation of SM2 increased (P < 0.05) egg production (%) and egg mass and decreased FCR compared to the other groups, which showed no significant differences (P > 0.05) in between. It is the first study reporting that the eggs from the quail fed SM2 diet had lower concentrations (P < 0.05) of triglycerides, LDL, and cholesterol than those fed SS. Feeding SM increased (P < 0.05) blood glucose, T4, and T3 levels. Moreover, feeding SM increased the activity of GPX and SOD with a higher significance (P < 0.05) for SM2 than SM1. In conclusion, no adverse effects from supplementation of SM up to 0.4 mg/kg were observed and could improve their performance, antioxidant defense, thyroid activity, and functional egg quality.


Subject(s)
Antioxidants , Coturnix , Animal Feed/analysis , Animals , Diet , Dietary Supplements , Eggs
8.
Animals (Basel) ; 10(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545606

ABSTRACT

Chicken Salmonella enterica serovars are enteric bacteria associated with massive public health risks and economic losses. There is a widespread antimicrobial resistance among S. enterica serotypes, and innovative solutions to antibiotic resistance are needed. We aimed to use probiotics to reduce antibiotic resistance and identify the major probiotic players that modify the early interactions between S. enterica and host cells. One-day-old cobb broiler chicks were challenged with S. typhimurium after oral inoculation with different probiotic strains for 3 days. The adherence of different probiotic strains to Caco-2 intestinal epithelial cells was studied in vitro. Lactobacillus (Lacticaseibacillus) casei ATTC334 and Bifidobacterium breve JCM1192 strains attached to Caco-2 cells stronger than B. infantis BL2416. L. casei ATTC334 and B. breve JCM1192 reduced S. typhimurium recovery from the cecal tonsils by competitive exclusion mechanism. Although B. infantis BL2416 bound poorly to Caco-2 epithelial cells, it reduced S. typhimurium recovery and increased IFN-γ and TNF-α production. L. casei ATTC334, B. breve JCM1192 and B. infantis BL2416 improved body weight gain and the food conversion rate in S. typhimurium-infected broilers. B. longum Ncc2785 neither attached to epithelial cells nor induced IFN-γ and TNF-α release and consequently did not prevent S. typhimurium colonization in broiler chickens. In conclusion, probiotics prevented the intestinal colonization of S. typhimurium in infected chickens by competitive exclusion or cytokine production mechanisms.

9.
Environ Sci Pollut Res Int ; 27(16): 19108-19114, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30715696

ABSTRACT

This study aimed to elucidate the response of broiler chickens to the dietary nano-zinc supplementation in terms of immune response and antioxidant activity. Ninety-one-day-old chicks (Ross 308) were randomly assigned to one of three dietary treatments in three replicates, in a feeding trial that lasted for 5 weeks. Birds were fed a basal diet supplemented with inorganic zinc oxide at 40 mg/kg diet (control), zinc oxide nanoparticles (ZnONPs) at 40 mg/kg diet (ZN1), or ZnONPs at 80 mg/kg diet (ZN2). Birds were injected with DNP-KLH at the 7th and 21st days from the beginning of the experiment, and blood samples were collected on days 7, 14, 21, 28, and 35 to determine the levels of immunoglobulin Y (IgY) and malondialdehyde as well as the antioxidant enzyme activities. Cellular immunity was assayed by estimation of phagocytic percentage and index of peripheral monocytes of blood and estimation of the T lymphocyte activity using a lymphocyte transformation test. The results showed that feeding broiler chickens a diet supplemented with ZnONPs increased (p < 0.05) the activity of superoxide dismutase and catalase and decreased the concentration of malondialdehyde compared to the control diet, without significant differences between NZ1 and NZ2 diets. Moreover, the chicks fed diets supplemented with ZnONPs showed a significant increase (p < 0.05) in serum IgY, total lymphocyte count, and macrophages compared to the control. A higher significant response for antibodies IgY concentration was observed in birds fed the NZ2 vs NZ1 diet. Also, there was a significant increase in phagocytic activity and phagocytic index in ZnONP-fed groups with a higher significance in the group fed NZ1 than with NZ2 diet as compared with the control. In conclusion, ZnONP application up to 80 mg/kg in the diet is safe for broiler chickens and could improve their antioxidant defense and cellular immunity.


Subject(s)
Antioxidants , Zinc Oxide , Animal Feed/analysis , Animals , Chickens , Diet , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...