Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rejuvenation Res ; 26(5): 180-193, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37427425

ABSTRACT

Effective cryopreservation of large tissues, limbs, and organs has the potential to revolutionize medical post-trauma reconstruction options and organ preservation and transplantation procedures. To date, vitrification and directional freezing are the only viable methods for long-term organ or tissue preservation, but are of limited clinical relevance. This work aimed to develop a vitrification-based approach that will enable the long-term survival and functional recovery of large tissues and limbs following transplantation. The presented novel two-stage cooling process involves rapid specimen cooling to subzero temperatures, followed by gradual cooling to the vitrification solution (VS) and tissue glass transition temperature. Flap cooling and storage were only feasible at temperatures equal to or slightly lower than the VS Tg (i.e., -135°C). Vascularized rat groin flaps and below-the-knee (BTK) hind limb transplants cryopreserved using this approach exhibited long-term survival (>30 days) following transplantation to rats. BTK-limb recovery included hair regrowth, normal peripheral blood flow, and normal skin, fat, and muscle histology. Above all, BTK limbs were reinnervated, enabling rats to sense pain in the cryopreserved limb. These findings provide a strong foundation for the development of a long-term large-tissue, limb and organ preservation protocol for clinical use.


Subject(s)
Cryopreservation , Groin , Animals , Rats , Cryopreservation/methods , Freezing , Cold Temperature , Vitrification
2.
J Anim Sci Biotechnol ; 10: 90, 2019.
Article in English | MEDLINE | ID: mdl-31754430

ABSTRACT

BACKGROUND: To advance the use of embryo vitrification in veterinary practice, we developed a system in which embryo vitrification, warming and dilution can be performed within a straw. Ovine in vitro produced embryos (IVEP) were vitrified at either early (EBs: n = 74) or fully expanded blastocyst stage (FEBs: n = 195), using a new device named "E.Vit", composed by a 0.25-mL straw with a 50-µm pore polycarbonate grid at one end. Embryos at each stage (EBs and FEBs) were vitrified by either Two-step (TS) or Multi-step (MS; 6 different concentrations of vitrification solutions) protocol. Non-vitrified embryos (n = 102) were maintained in in vitro culture as a control. Warming consisted of placing the straws directly into 1.5 mL tubes containing a TCM-199 solution with three decreasing concentrations of sucrose. Blastocyst re-expansion, embryo survival and hatching rate were evaluated at 2, 24 and 48 h post warming. The number of apoptotic cells was determined by TUNEL assay. RESULTS: Blastocyst re-expansion (2 h) after warming was higher (P < 0.05) in FEBs group, vitrified with the MS and TS methods (77.90% and 71.25%, respectively) compared with the EBs group (MS: 59.38% and TS: 48.50%, respectively). Survival rates of vitrified FEBs after 24 h IVC were higher (P < 0.001) in both methods (MS and TS) than vitrified EBs (MS: 56.25%; TS: 42.42%) and was higher (P < 0.05) in the MS method (94.19%) compared with those in TS (83.75%). After 48 h of culture the hatching rate for FEBs vitrified in MS system (91.86%) was similar to control (91.89%), but higher than FEB TS (77.5%) and EBs vitrified in MS (37.5%) and TS (33.33%). Number of apoptotic cells were higher in EBs, irrespective of the system used, compared to FEBs. The number of apoptotic cells in FEBs vitrified with MS was comparable to the control. CONCLUSIONS: A high survival rate of IVP embryos can be achieved by the new "E.Vit" device with hatching rates in vitro comparable with control fresh embryos. This method has the potential for use in direct embryo transfer in field conditions.

3.
J Assist Reprod Genet ; 36(10): 2145-2154, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31414315

ABSTRACT

PURPOSE: Testicular tissue cryopreservation prior to gonadotoxic therapies is a method to preserve fertility in children. However, the technique still requires development, especially when the tissue is immature and rather susceptible to stress derived from in vitro manipulation. This study aimed to investigate the effects of vitrification with a new cryodevice (E.Vit) on cell membrane integrity and gene expression of prepubertal testicular tissue in the ovine model. METHODS: Pieces of immature testicular tissue (1 mm3) were inserted into "E.Vit" devices and vitrified with a two-step protocol. After warming, tissues were cultured in vitro and cell membrane integrity was assessed after 0, 2, and 24 h by trypan blue exclusion test. Controls consisted of non-vitrified tissue analyzed after 0, 2, and 24 h in vitro culture (IVC). Expression of genes involved in transcriptional stress response (BAX, SOD1, CIRBP, HSP90AB1), cell proliferation (KIF11), and germ- (ZBDB16, TERT, POU5F1, KIT) and somatic- (AR, FSHR, STAR) cell specific markers was evaluated 2 and 24 h after warming. RESULTS: Post-warming trypan blue staining showed the survival of most cells, although membrane integrity immediately after warming (66.00% ± 4.73) or after 2 h IVC (59.67% ± 4.18) was significantly lower than controls (C0h 89.67% ± 1.45). Extended post-warming IVC (24 h) caused an additional decrease to 31% ± 3.46 (P < 0.05). Germ- and somatic-cell specific markers showed the survival of both cell types after cryopreservation and IVC. All genes were affected by cryopreservation and/or IVC, and moderate stress conditions were indicated by transcriptional stress response. CONCLUSIONS: Vitrification with the cryodevice E.Vit is a promising strategy to cryopreserve prepubertal testicular tissue.


Subject(s)
Cryopreservation/methods , Ovarian Follicle/metabolism , Testis/metabolism , Vitrification , Animals , Apoptosis/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation/genetics , Humans , Male , Ovarian Follicle/growth & development , Sheep/genetics , Sheep/physiology , Testis/growth & development , Vitamin E/genetics
5.
Biopreserv Biobank ; 10(4): 386-94, 2012 Aug.
Article in English | MEDLINE | ID: mdl-24849889

ABSTRACT

Red blood cell (RBC) units are administered routinely into patients expressing a wide range of acute and chronic conditions (e.g., anemia, traumatic bleeding, chronic diseases, and surgery). The modern blood banking system has been designed to answer this need and assure a continuous, high quality blood supply to patients. However, RBCs units can be stored under hypothermic conditions for only up to 42 days, which leads to periodic shortages. Cryopreservation can solve these shortages, but current freezing methods employ high glycerol concentrations, which need to be removed and the cells washed prior to transfusion, resulting in a long (more than 1 hour) and cumbersome washing step. Thus, frozen RBCs have limited use in acute and trauma situations. In addition, transportation of frozen samples is complicated and costly. Freeze drying (lyophilization) of RBCs has been suggested as a solution for these problems, since it will allow for a low weight sample to be stored at room temperature, but reaching this goal is not a simple task. We studied the effect of different solutions (IMT2 and IMT3) containing trehalose and antioxidants or trehalose and human serum albumin, respectively, on freezing/thawing and freeze drying of RBCs. In addition, we evaluated the effect of cells concentrations and cooling rates on the post thaw and post rehydration recoveries of the RBCs. Finally, we developed a new radio frequency (RF) lyophilization device for a more rapid and homogeneous sublimation process of the frozen RBCs samples. Recovery and free Hb were measured as well as oxygen association/dissociation and cell's deformability. We found that IMT3 (0.3 M trehalose and 10% HSA) solution that was directionally frozen at a rapid interface velocity of 1 mm/sec (resulting in a cooling rate of 150°C/min) yielded the best results (better than IMT2 solution and slow interface velocity). Freeze thawing gave 100% survival, while freeze drying followed by rehydration with 20% dextran-40kDa solution resulted in 75% survival. However, recovery following freeze drying was possible only when 20% Dextran-40 solution was used as the rehydration medium. The rehydrated cells were not stable upon an eight-fold dilution. The RF lyophilization system increased the sublimation rate more than twice compared to conventional drying and maintained a high survival rate of the RBCs after partial drying.


Subject(s)
Blood Preservation/methods , Erythrocytes/cytology , Freeze Drying/methods , Radio Waves , Cryopreservation/methods , Cryoprotective Agents/chemistry , Erythrocytes/radiation effects , Hemolysis/radiation effects , Humans
7.
PLoS One ; 4(4): e5240, 2009.
Article in English | MEDLINE | ID: mdl-19381290

ABSTRACT

BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+)-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+)-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4)+/-4.7, 3.49 x 10(4)+/-6 and 6.31 x 10(4)+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively). CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells.


Subject(s)
Fetal Blood/cytology , Freeze Drying , Monocytes/cytology , Catechin/administration & dosage , Catechin/analogs & derivatives , Cell Survival , Culture Media , Dose-Response Relationship, Drug , Humans , Microscopy, Electron, Scanning
8.
Mol Cell Endocrinol ; 187(1-2): 77-81, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11988314

ABSTRACT

We developed new techniques to improve freezing and vitrification of sperm, oocytes and embryos. Our novel freezing technology is based on 'Multi-Thermal-Gradient' (MTG) freezing that is used for sperm. The freezing apparatus has the ability to control ice crystals propagation by changing thermal gradient or the liquid-ice interface velocity which optimizes ice crystals morphology during freezing of cells and tissue. Using this apparatus we were able to freeze bull, stallion, boar, ram, fowl and human sperm with normal post-thaw motility/pre-freezing motility of 70-100%. The vitrification method includes the cooling of nanoliter sample (the 'Minimum Drop Size' technique) in 'super-cooled' liquid nitrogen (-210 degrees C), which maximized cooling rate to the highest physically possible (24-130000 degrees C/min). Using this method we achieved very high survival of bovine oocytes and embryos. Vitrification of oocytes at the MII stage resulted with cleavage and blastocyst rate of 50 and 20%, respectively. The vitrification of in-vitro production (IVP) of bovine embryos allowed the production of a healthy calf after embryo-transfer carrying the name 'Zegugit' (in Hebrew: made from glass).


Subject(s)
Cryopreservation/methods , Germ Cells/cytology , Animals , Cryopreservation/instrumentation , Cryopreservation/trends , Humans , Ice/adverse effects , Male , Sperm Motility
SELECTION OF CITATIONS
SEARCH DETAIL