Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Sci Am ; 330(4): 42, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-39017289
2.
Nano Lett ; 24(1): 525-532, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109687

ABSTRACT

The manipulation of coupled quantum excitations is of fundamental importance in realizing novel photonic and optoelectronic devices. We use electroluminescence to probe plasmon-exciton coupling in hybrid structures consisting of a nanoscale plasmonic tunnel junction and few-layer two-dimensional transition-metal dichalcogenide transferred onto the junction. The resulting hybrid states act as a novel dielectric environment that affects the radiative recombination of hot carriers in the plasmonic nanostructure. We determine the plexcitonic spectrum from the electroluminescence and find Rabi splittings exceeding 50 meV in the strong coupling regime. Our experimental findings are supported by electromagnetic simulations that enable us to explore systematically and in detail the emergence of plexciton polaritons as well as the polarization characteristics of their far-field emission. Electroluminescence modulated by plexciton coupling provides potential applications for engineering compact photonic devices with tunable optical and electrical properties.

3.
Science ; 382(6673): 907-911, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37995251

ABSTRACT

Strange-metal behavior has been observed in materials ranging from high-temperature superconductors to heavy fermion metals. In conventional metals, current is carried by quasiparticles; although it has been suggested that quasiparticles are absent in strange metals, direct experimental evidence is lacking. We measured shot noise to probe the granularity of the current-carrying excitations in nanowires of the heavy fermion strange metal YbRh2Si2. When compared with conventional metals, shot noise in these nanowires is strongly suppressed. This suppression cannot be attributed to either electron-phonon or electron-electron interactions in a Fermi liquid, which suggests that the current is not carried by well-defined quasiparticles in the strange-metal regime that we probed. Our work sets the stage for similar studies of other strange metals.

4.
J Phys Chem Lett ; 14(33): 7574-7580, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37589653

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is enabled by local surface plasmon resonances (LSPRs) in metallic nanogaps. When SERS is excited by direct illumination of the nanogap, the background heating of the lattice and electrons can prevent further manipulation of the molecules. To overcome this issue, we report SERS in electromigrated gold molecular junctions excited remotely: surface plasmon polaritons (SPPs) are excited at nearby gratings, propagate to the junction, and couple to the local nanogap plasmon modes. Like direct excitation, remote excitation of the nanogap can generate both SERS emission and an open-circuit photovoltage (OCPV). We compare the SERS intensity and the OCPV in both direct and remote illumination configurations. SERS spectra obtained by remote excitation are much more stable than those obtained through direct excitation when the photon count rates are comparable. By statistical analysis of 33 devices, the coupling efficiency of remote excitation is calculated to be around 10%, consistent with the simulated energy flow.

5.
Nano Lett ; 22(20): 8068-8075, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36197739

ABSTRACT

Atomic-sized plasmonic tunnel junctions are of fundamental interest, with great promise as the smallest on-chip light sources in various optoelectronic applications. Several mechanisms of light emission in electrically driven plasmonic tunnel junctions have been proposed, from single-electron or higher-order multielectron inelastic tunneling to recombination from a steady-state population of hot carriers. By progressively altering the tunneling conductance of an aluminum junction, we tune the dominant light emission mechanism through these possibilities for the first time, finding quantitative agreement with theory in each regime. Improved plasmonic resonances in the energy range of interest increase photon yields by 2 orders of magnitude. These results demonstrate that the dominant emission mechanism is set by a combination of tunneling rate, hot carrier relaxation time scales, and junction plasmonic properties.

6.
Nat Mater ; 21(8): 839-840, 2022 08.
Article in English | MEDLINE | ID: mdl-35835821

Subject(s)
Logic
7.
Nano Lett ; 21(6): 2658-2665, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33710898

ABSTRACT

Surface plasmon enhanced processes and hot-carrier dynamics in plasmonic nanostructures are of great fundamental interest to reveal light-matter interactions at the nanoscale. Using plasmonic tunnel junctions as a platform supporting both electrically and optically excited localized surface plasmons, we report a much greater (over 1000× ) plasmonic light emission at upconverted photon energies under combined electro-optical excitation, compared with electrical or optical excitation separately. Two mechanisms compatible with the form of the observed spectra are interactions of plasmon-induced hot carriers and electronic anti-Stokes Raman scattering. Our measurement results are in excellent agreement with a theoretical model combining electro-optical generation of hot carriers through nonradiative plasmon excitation and hot-carrier relaxation. We also discuss the challenge of distinguishing relative contributions of hot carrier emission and the anti-Stokes electronic Raman process. This observed increase in above-threshold emission in plasmonic systems may open avenues in on-chip nanophotonic switching and hot-carrier photocatalysis.

8.
J Phys Condens Matter ; 33(13)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33429369

ABSTRACT

Experimentally resolving the microscopic energy dissipation and redistribution pathways in a molecular-scale junction, the smallest possible nanoelectronic device, is of great current interest. Here we report measurements of the vibrational pumping and light emission processes in current-carrying molecular junctions using surface enhanced Raman spectroscopy. We show that the heating of vibrational modes exhibits distinct features when the molecular junctions are driven by electrical bias or optical power. We further discuss the hot carrier origin of the broadband continuum emission observed in the Raman scattering spectrum.

9.
ACS Nano ; 14(12): 17535-17542, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33270432

ABSTRACT

Plasmonic-based photodetectors are receiving increased attention because simple structural changes can make the photodetectors spectrally sensitive. In this study, asymmetric gold nanostructures are used as simple structures for photodetection via the photothermoelectric response. These single metal photodetectors use localized optical absorption from plasmon resonances of gold nanowires at desired wavelengths to generate temperature gradients. Combined with a geometry-dependent Seebeck coefficient, the result is a net electrical signal when the whole geometry is illuminated, with spectral sensitivity and polarization dependence from the plasmon resonances. We show experimental results and simulations of single-wavelength photodetectors at two wavelengths in the near IR range: 785 and 1060 nm. Based on simulation results and a model for the geometry-dependent Seebeck response, we demonstrate a photodetector structure that generates polarization-sensitive responses of opposite signs for the two wavelengths. The experimental photothermoelectric results are combined with simulations to infer the geometry dependence of the Seebeck response. These results can be used to increase the responsivity of these photodetectors further.

10.
Proc Natl Acad Sci U S A ; 117(38): 23350-23355, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32900922

ABSTRACT

The electronic Seebeck response in a conductor involves the energy-dependent mean free path of the charge carriers and is affected by crystal structure, scattering from boundaries and defects, and strain. Previous photothermoelectric (PTE) studies have suggested that the thermoelectric properties of polycrystalline metal nanowires are related to grain structure, although direct evidence linking crystal microstructure to the PTE response is difficult to elucidate. Here, we show that room temperature scanning PTE measurements are sensitive probes that can detect subtle changes in the local Seebeck coefficient of gold tied to the underlying defects and strain that mediate crystal deformation. This connection is revealed through a combination of scanning PTE and electron microscopy measurements of single-crystal and bicrystal gold microscale devices. Unexpectedly, the photovoltage maps strongly correlate with gradually varying crystallographic misorientations detected by electron backscatter diffraction. The effects of individual grain boundaries and differing grain orientations on the PTE signal are minimal. This scanning PTE technique shows promise for identifying minor structural distortions in nanoscale materials and devices.

11.
Nano Lett ; 20(8): 6067-6075, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32568541

ABSTRACT

Above-threshold light emission from plasmonic tunnel junctions, when emitted photons have energies significantly higher than the energy scale of incident electrons, has attracted much recent interest in nano-optics, while the underlying physics remains elusive. We examine above-threshold light emission in electromigrated tunnel junctions. Our measurements over a large ensemble of devices demonstrate a giant (∼104) material-dependent photon yield (emitted photons per incident electrons). This dramatic effect cannot be explained only by the radiative field enhancement due to localized plasmons in the tunneling gap. Emission is well described by a Boltzmann spectrum with an effective temperature exceeding 2000 K, coupled to a plasmon-modified photonic density of states. The effective temperature is approximately linear in the applied bias, consistent with a suggested theoretical model describing hot-carrier dynamics driven by nonradiative decay of electrically excited localized plasmons. Electrically generated hot carriers and nontraditional light emission could open avenues for active photochemistry, optoelectronics, and quantum optics.

12.
Nature ; 572(7770): 493-496, 2019 08.
Article in English | MEDLINE | ID: mdl-31435059

ABSTRACT

In the quest to understand high-temperature superconductivity in copper oxides, debate has been focused on the pseudogap-a partial energy gap that opens over portions of the Fermi surface in the 'normal' state above the bulk critical temperature1. The pseudogap has been attributed to precursor superconductivity, to the existence of preformed pairs and to competing orders such as charge-density waves1-4. A direct determination of the charge of carriers as a function of temperature and bias could help resolve among these alternatives. Here we report measurements of the shot noise of tunnelling current in high-quality La2-xSrxCuO4/La2CuO4/La2-xSrxCuO4 (LSCO/LCO/LSCO) heterostructures fabricated using atomic layer-by-layer molecular beam epitaxy at several doping levels. The data delineate three distinct regions in the bias voltage-temperature space. Well outside the superconducting gap region, the shot noise agrees quantitatively with independent tunnelling of individual charge carriers. Deep within the superconducting gap, shot noise is greatly enhanced, reminiscent of multiple Andreev reflections5-7. Above the critical temperature and extending to biases much larger than the superconducting gap, there is a broad region in which the noise substantially exceeds theoretical expectations for single-charge tunnelling, indicating pairing of charge carriers. These pairs are detectable deep into the pseudogap region of temperature and bias. The presence of these pairs constrains current models of the pseudogap and broken symmetry states, while phase fluctuations limit the domain of superconductivity.

13.
Nano Lett ; 19(6): 3777-3781, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31059270

ABSTRACT

Manual assembly of atomically thin materials into heterostructures with desirable electronic properties is an approach that holds great promise. Despite the rapid expansion of the family of ultrathin materials, stackable and stable ferro/ferri magnets that are functional at room temperature are still out of reach. We report the growth of air-stable, transferable ultrathin iron oxide crystals that exhibit magnetic order at room temperature. These crystals require no passivation and can be prepared by scalable and cost-effective chemical vapor deposition. We demonstrate that the bonding between iron oxide and its growth substrate is van der Waals-like, enabling us to remove the crystals from their growth substrate and prepare iron oxide/graphene heterostructures.

14.
Nano Lett ; 18(10): 6557-6562, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30226779

ABSTRACT

A thin coating of gold oxide, metastable at room temperature, can be formed by placing gold in a strongly oxidizing environment such as an oxygen plasma. We report scanning photovoltage measurements of lithographically defined gold nanowires subsequent to oxygen plasma exposure. Photovoltages are detected during the first optical scan of the devices that are several times larger than those mapped on subsequent scans. The first-scan enhanced photovoltage correlates with a reduction of the electrical resistance of the nanostructure back to preoxygen-exposure levels. Repeating oxygen plasma exposure "reinitializes" the devices. These combined photovoltage and transport measurements imply that the enhanced photovoltage results from the photothermoelectric response of a junction between Au and oxidized Au, with an optically driven decomposition of the oxide. Comparisons with the known temperature-dependent kinetics of AuOx decomposition suggest that the light-driven decomposition is not a purely thermal effect. These experiments demonstrate that combined optical and electronic measurements can provide a window on surface-sensitive photochemical processes.

15.
Nano Lett ; 17(9): 5646-5652, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28796525

ABSTRACT

We report a method to electrically detect heating from excitation of propagating surface plasmon polaritons (SPP). The coupling between SPP and a continuous wave laser beam is realized through lithographically defined gratings in the electrodes of thin film gold "bow tie" nanodevices. The propagating SPPs allow remote coupling of optical energy into a nanowire constriction. Heating of the constriction is detectable through changes in the device conductance and contains contributions from both thermal diffusion of heat generated at the grating and heat generated locally at the constriction by plasmon dissipation. We quantify these contributions through computational modeling and demonstrate that the propagation of SPPs provides the dominant contribution. Coupling optical energy into the constriction via propagating SPPs in this geometry produces an inferred temperature rise of the constriction a factor of 60 smaller than would take place if optical energy were introduced via directly illuminating the constriction. The grating approach provides a path for remote excitation of nanoconstrictions using SPPs for measurements that usually require direct laser illumination, such as surface-enhanced Raman spectroscopy.

16.
Nanoscale ; 9(26): 9160-9166, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28650059

ABSTRACT

Nanoscale structuring holds promise to improve the thermoelectric properties of materials for energy conversion and photodetection. We report a study of the spatial distribution of the photothermoelectric voltage in thin-film nanowire devices fabricated from a single metal. A focused laser beam is used to locally heat the metal nanostructure via a combination of direct absorption and excitation of a plasmon resonance in Au devices. As seen previously, in nanowires shorter than the spot size of the laser, we observe a thermoelectric voltage distribution that is consistent with the local Seebeck coefficient being spatially dependent on the width of the nanostructure. In longer structures, we observe extreme variability of the net thermoelectric voltage as the laser spot is scanned along the length of the nanowire. The sign and magnitude of the thermoelectric voltage is sensitive to the structural defects, metal grain structure, and surface passivation of the nanowire. This finding opens the possibility of improved local control of the thermoelectric properties at the nanoscale.

17.
J Phys Condens Matter ; 29(18): 185601, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28362641

ABSTRACT

The standard treatment of quantum corrections to semiclassical electronic conduction assumes that charge carriers propagate many wavelengths between scattering events, and succeeds in explaining multiple phenomena (weak localization magnetoresistance (WLMR), universal conductance fluctuations, Aharonov-Bohm oscillations) observed in polycrystalline metals and doped semiconductors in various dimensionalities. We report apparent WLMR and conductance fluctuations in H x VO2, a poor metal (in violation of the Mott-Ioffe-Regel limit) stabilized by the suppression of the VO2 metal-insulator transition through atomic hydrogen doping. Epitaxial thin films, single-crystal nanobeams, and nanosheets show similar phenomenology, though the details of the apparent WLMR seem to depend on the combined effects of the strain environment and presumed doping level. Self-consistent quantitative analysis of the WLMR is challenging given this and the high resistivity of the material, since the quantitative expressions for WLMR are derived assuming good metallicity. These observations raise the issue of how to assess and analyze mesoscopic quantum effects in poor metals.

18.
J Phys Chem Lett ; 8(8): 1739-1744, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28365996

ABSTRACT

Nanostructured metals subject to local optical interrogation can generate open-circuit photovoltages potentially useful for energy conversion and photodetection. We report a study of the photovoltage as a function of illumination position in single-metal Au nanowires and nanowires with nanogaps formed by electromigration. We use a laser scanning microscope to locally heat the metal nanostructures via excitation of a local plasmon resonance and direct absorption. In nanowires without nanogaps, where charge transport is diffusive, we observe voltage distributions consistent with thermoelectricity, with the local Seebeck coefficient depending on the width of the nanowire. In the nanowires with nanogaps, where charge transport is by tunneling, we observe large photovoltages up to tens of mV, with magnitude, polarization dependence, and spatial localization that follow the plasmon resonance in the nanogap. This is consistent with a model of photocurrent across the nanogap carried by the nonequilibrium, "hot" carriers generated upon plasmon excitation.

19.
ACS Nano ; 11(4): 3760-3766, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28350436

ABSTRACT

Heterointerfaces of SrTiO3 with other transition metal oxides make up an intriguing family of systems with a bounty of coexisting and competing physical orders. Some examples, such as LaAlO3/SrTiO3, support a high carrier density electron gas at the interface whose electronic properties are determined by a combination of lattice distortions, spin-orbit coupling, defects, and various regimes of magnetic and charge ordering. Here, we study electronic transport in mesoscale devices made with heterostructures of SrTiO3 sandwiched between layers of SmTiO3, in which the transport properties can be tuned from a regime of Fermi-liquid like resistivity (ρ ∝ T2) to a non-Fermi liquid (ρ ∝ T5/3) by controlling the SrTiO3 thickness. In mesoscale devices at low temperatures, we find unexpected voltage fluctuations that grow in magnitude as T is decreased below 20 K, are suppressed with increasing contact electrode size, and are independent of the drive current and contact spacing distance. Magnetoresistance fluctuations are also observed, which are reminiscent of universal conductance fluctuations but not entirely consistent with their conventional properties. Candidate explanations are considered, and a mechanism is suggested based on mesoscopic temporal fluctuations of the Seebeck coefficient. An improved understanding of charge transport in these model systems, especially their quantum coherent properties, may lead to insights into the nature of transport in strongly correlated materials that deviate from Fermi liquid theory.

20.
J Phys Condens Matter ; 28(49): 495303, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27748268

ABSTRACT

We report measurements of the bias dependence of the Fano factor in ensembles of atomic-scale Au junctions at 77 K. Previous measurements of shot noise at room temperature and low biases have found good agreement of the Fano factor with the expectations of the Landauer-Büttiker formalism, while enhanced Fano factors have been observed at biases of hundreds of mV (Chen et al 2014 Sci. Rep. 4 4221). We find even stronger enhancement of shot noise at 77 K with an 'excess' Fano factor up to ten times the low bias value. We discuss the observed ensemble Fano factor bias dependence in terms of candidate models. The results are most consistent with either a bias-dependent channel mixing picture or a model incorporating noise enhancement due to current-driven, nonequilibrium phonon populations, though a complete theoretical treatment of the latter in the ensemble average limit is needed.

SELECTION OF CITATIONS
SEARCH DETAIL