Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(48): e2309205120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37988467

ABSTRACT

Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.


Subject(s)
Autoimmunity , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Inflammation/metabolism , Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/genetics , Receptors, Antigen, T-Cell/genetics , Ubiquitin-Protein Ligases
2.
Int Immunol ; 35(4): 159-170, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36525589

ABSTRACT

The RNA-binding proteins Roquin-1/2 and Regnase-1 exert essential regulation by controlling pro-inflammatory mRNA expression to prevent autoimmune disease. More recently, inhibition of this post-transcriptional gene regulatory program has been demonstrated to enable enhanced anti-tumor responses by tumor antigen-specific CD8+ T cells. In this review, we describe the functions of these RNA-binding proteins and the phenotypes that arise in association with genetic inhibition or inactivation. We discuss how inducible inactivation of the system reprograms CD4+ and CD8+ T cell fates by changing cell metabolism, activation, differentiation or effector/memory decisions. We furthermore outline what we need to know to precisely modulate this system in order to dampen autoimmune reactions or boost the efficacy of adoptively transferred T cells or chimeric antigen receptor (CAR) T cells in cancer immunotherapies.


Subject(s)
Autoimmune Diseases , Gene Expression Regulation , Humans , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy , Cell Differentiation , Endoribonucleases/metabolism , RNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL