Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38105991

ABSTRACT

Preeclampsia is one of the leading causes of infant and maternal mortality worldwide. Many infants born from preeclamptic pregnancies are born prematurely with higher risk of developing cardiovascular later in their life. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). To gain insight into this, cord blood derived ECFCs isolated from preeclamptic pregnancies (PRECs) were analyzed and compared to their healthy counterparts. While PRECs preserve key endothelial markers, they upregulate several markers associated with oxidative stress and inflammatory response. Compared to ECFCs, PRECs also exhibit lower migratory behaviors and impaired angiogenic potential. Interestingly, treatment of neuropilin-1 can improve tube formation in vitro. Collectively, this study reports that preeclamptic milieu influence phenotypes and functionality of PRECs, which can be rejuvenated using exogenous molecules. Promising results from this study warrant future investigations on the prospect of the rejuvenated PRECs to improve lung function of infants born from preeclamptic pregnancies.

2.
Cell Mol Bioeng ; 15(5): 467-478, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36444348

ABSTRACT

Introduction: Controlling the formation of blood and lymphatic vasculatures is crucial for engineered tissues. Although the lymphatic vessels originate from embryonic blood vessels, the two retain functional and physiological differences even as they develop in the vicinity of each other. This suggests that there is a previously unknown molecular mechanism by which blood (BECs) and lymphatic endothelial cells (LECs) recognize each other and coordinate to generate distinct capillary networks. Methods: We utilized Matrigel and fibrin assays to determine how cord-like structures (CLS) can be controlled by altering LEC and BEC identity through podoplanin (PDPN) and folliculin (FLCN) expressions. We generated BEC ΔFLCN and LEC ΔPDPN , and observed cell migration to characterize loss lymphatic and blood characteristics due to respective knockouts. Results: We observed that LECs and BECs form distinct CLS in Matrigel and fibrin gels despite being cultured in close proximity with each other. We confirmed that the LECs and BECs do not recognize each other through paracrine signaling, as proliferation and migration of both cells were unaffected by paracrine signals. On the other hand, we found PDPN to be the key surface protein that is responsible for LEC-BEC recognition, and LECs lacking PDPN became pseudo-BECs and vice versa. We also found that FLCN maintains BEC identity through downregulation of PDPN. Conclusions: Overall, these observations reveal a new molecular pathway through which LECs and BECs form distinct CLS through physical contact by PDPN which in turn is regulated by FLCN, which has important implications toward designing functional engineered tissues. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00730-2.

SELECTION OF CITATIONS
SEARCH DETAIL