Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Br J Cancer ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866964

ABSTRACT

BACKGROUND: Predictive biomarkers in use for immunotherapy in advanced non-small cell lung cancer are of limited sensitivity and specificity. We analysed the potential of activating KRAS and pathogenic TP53 mutations to provide additional predictive information. METHODS: The study cohort included 713 consecutive immunotherapy patients with advanced lung adenocarcinomas, negative for actionable genetic alterations. Additionally, two previously published immunotherapy and two surgical patient cohorts were analyzed. Therapy benefit was stratified by KRAS and TP53 mutations. Molecular characteristics underlying KRASmut/TP53mut tumours were revealed by the analysis of TCGA data. RESULTS: An interaction between KRAS and TP53 mutations was observed in univariate and multivariate analyses of overall survival (Hazard ratio [HR] = 0.56, p = 0.0044 and HR = 0.53, p = 0.0021) resulting in a stronger benefit for KRASmut/TP53mut tumours (HR = 0.71, CI 0.55-0.92). This observation was confirmed in immunotherapy cohorts but not observed in surgical cohorts. Tumour mutational burden, proliferation, and PD-L1 mRNA were significantly higher in TP53-mutated tumours, regardless of KRAS status. Genome-wide expression analysis revealed 64 genes, including CX3CL1 (fractalkine), as specific transcriptomic characteristic of KRASmut/TP53mut tumours. CONCLUSIONS: KRAS/TP53 co-mutation predicts ICI benefit in univariate and multivariate survival analyses and is associated with unique molecular tumour features. Mutation testing of the two genes can be easily implemented using small NGS panels.

2.
NPJ Precis Oncol ; 7(1): 109, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884744

ABSTRACT

Analysis of selected cancer genes has become an important tool in precision oncology but cannot fully capture the molecular features and, most importantly, vulnerabilities of individual tumors. Observational and interventional studies have shown that decision-making based on comprehensive molecular characterization adds significant clinical value. However, the complexity and heterogeneity of the resulting data are major challenges for disciplines involved in interpretation and recommendations for individualized care, and limited information exists on how to approach multilayered tumor profiles in clinical routine. We report our experience with the practical use of data from whole-genome or exome and RNA sequencing and DNA methylation profiling within the MASTER (Molecularly Aided Stratification for Tumor Eradication Research) program of the National Center for Tumor Diseases (NCT) Heidelberg and Dresden and the German Cancer Research Center (DKFZ). We cover all relevant steps of an end-to-end precision oncology workflow, from sample collection, molecular analysis, and variant prioritization to assigning treatment recommendations and discussion in the molecular tumor board. To provide insight into our approach to multidimensional tumor profiles and guidance on interpreting their biological impact and diagnostic and therapeutic implications, we present case studies from the NCT/DKFZ molecular tumor board that illustrate our daily practice. This manual is intended to be useful for physicians, biologists, and bioinformaticians involved in the clinical interpretation of genome-wide molecular information.

3.
NPJ Precis Oncol ; 7(1): 106, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864096

ABSTRACT

A growing number of druggable targets and national initiatives for precision oncology necessitate broad genomic profiling for many cancer patients. Whole exome sequencing (WES) offers unbiased analysis of the entire coding sequence, segmentation-based detection of copy number alterations (CNAs), and accurate determination of complex biomarkers including tumor mutational burden (TMB), homologous recombination repair deficiency (HRD), and microsatellite instability (MSI). To assess the inter-institution variability of clinical WES, we performed a comparative pilot study between German Centers of Personalized Medicine (ZPMs) from five participating institutions. Tumor and matched normal DNA from 30 patients were analyzed using custom sequencing protocols and bioinformatic pipelines. Calling of somatic variants was highly concordant with a positive percentage agreement (PPA) between 91 and 95% and a positive predictive value (PPV) between 82 and 95% compared with a three-institution consensus and full agreement for 16 of 17 druggable targets. Explanations for deviations included low VAF or coverage, differing annotations, and different filter protocols. CNAs showed overall agreement in 76% for the genomic sequence with high wet-lab variability. Complex biomarkers correlated strongly between institutions (HRD: 0.79-1, TMB: 0.97-0.99) and all institutions agreed on microsatellite instability. This study will contribute to the development of quality control frameworks for comprehensive genomic profiling and sheds light onto parameters that require stringent standardization.

4.
Gastroenterology ; 165(5): 1262-1275, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37562657

ABSTRACT

BACKGROUND & AIMS: Diagnosis of adenocarcinoma in the liver is a frequent scenario in routine pathology and has a critical impact on clinical decision making. However, rendering a correct diagnosis can be challenging, and often requires the integration of clinical, radiologic, and immunohistochemical information. We present a deep learning model (HEPNET) to distinguish intrahepatic cholangiocarcinoma from colorectal liver metastasis, as the most frequent primary and secondary forms of liver adenocarcinoma, with clinical grade accuracy using H&E-stained whole-slide images. METHODS: HEPNET was trained on 714,589 image tiles from 456 patients who were randomly selected in a stratified manner from a pool of 571 patients who underwent surgical resection or biopsy at Heidelberg University Hospital. Model performance was evaluated on a hold-out internal test set comprising 115 patients and externally validated on 159 patients recruited at Mainz University Hospital. RESULTS: On the hold-out internal test set, HEPNET achieved an area under the receiver operating characteristic curve of 0.994 (95% CI, 0.989-1.000) and an accuracy of 96.522% (95% CI, 94.521%-98.694%) at the patient level. Validation on the external test set yielded an area under the receiver operating characteristic curve of 0.997 (95% CI, 0.995-1.000), corresponding to an accuracy of 98.113% (95% CI, 96.907%-100.000%). HEPNET surpassed the performance of 6 pathology experts with different levels of experience in a reader study of 50 patients (P = .0005), boosted the performance of resident pathologists to the level of senior pathologists, and reduced potential downstream analyses. CONCLUSIONS: We provided a ready-to-use tool with clinical grade performance that may facilitate routine pathology by rendering a definitive diagnosis and guiding ancillary testing. The incorporation of HEPNET into pathology laboratories may optimize the diagnostic workflow, complemented by test-related labor and cost savings.

5.
Lung Cancer ; 184: 107317, 2023 10.
Article in English | MEDLINE | ID: mdl-37586177

ABSTRACT

OBJECTIVES: Molecular diagnosis for targeted therapies has been improved significantly in non-small-cell lung cancer (NSCLC) patients in recent years. Here we report on the prevalence of rare fusions in NSCLC and dissect their genomic architecture and potential clinical implications. MATERIALS AND METHODS: Overall, n = 5554 NSCLC patients underwent next-generation sequencing (NGS) for combined detection of oncogenic mutations and fusions either at primary diagnosis (n = 5246) or after therapy resistance (n = 308). Panels of different sizes were employed with closed amplicon-based, or open assays, i.e. anchored multiplex PCR (AMP) and hybrid capture-based, for detection of translocations, including "rare" fusions, defined as those beyond ALK, ROS1, RET and <0.5 % frequency in NSCLC. RESULTS: Rare fusions involving EGFR, MET, HER2, BRAF and other potentially actionable oncogenes were detected in 0.5% (n = 26) of therapy-naive and 2% (n = 6) TKI-treated tumors. Detection was increased using open assays and/or larger panels, especially those covering >25 genes, by approximately 1-2% (p = 0.001 for both). Patient characteristics (age, gender, smoking, TP53 co-mutations (56%), or mean tumor mutational burden (TMB) (4.8 mut/Mb)) showed no association with presence of rare fusions. Non-functional alterations, i.e. out-of-frame or lacking kinase domains, comprised one-third of detected rare fusions and were significantly associated with simultaneous presence of classical oncogenic drivers, e.g. EGFR or KRAS mutations (p < 0.001), or use of larger panels (frequency of non-functional among the detected rare fusions 57% for 25+ gene- vs. 12% for smaller panels, p < 0.001). As many rare fusions were identified before availability of targeted therapy, mean survival for therapy-naïve patients was 23.8 months, comparable with wild-type tumors. CONCLUSION: Approximately 1-2% of advanced NSCLC harbor rare fusions, which are potentially actionable and may support diagnosis. Routine adoption of broad NGS assays capable to identify exact fusion points and potentially retained protein domains can increase the yield of therapeutically relevant molecular information in advanced NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Genomics , Mutation , ErbB Receptors/genetics
6.
Transl Oncol ; 35: 101706, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37327584

ABSTRACT

Homologous recombination deficiency (HRD) is a predictive marker for response to poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian carcinoma. HRD scores have entered routine diagnostics, but the influence of algorithms, parameters and confounders has not been analyzed comprehensively. A series of 100 poorly differentiated ovarian carcinoma samples was analyzed using whole exome sequencing (WES) and genotyping. Tumor purity was determined using conventional pathology, digital pathology, and two bioinformatic methods. HRD scores were calculated from copy number profiles determined by Sequenza and by Sclust either with or without fixed tumor purity. Tumor purity determination by digital pathology combined with a tumory purity informed variant of Sequenza served as reference method for HRD scoring. Seven tumors had deleterious mutations in BRCA1/2, 12 tumors had deleterious mutations in other homologous recombination repair (HRR) genes, 18 tumors had variants of unknown significance (VUS) in BRCA1/2 or other HRR genes, while the remaining 63 tumors had no relevant alterations. Using the reference method for HRD scoring, 68 tumors were HRD-positive. HRDsum determined by WES correlated strongly with HRDsum determined by single nucleotide polymorphism (SNP) arrays (R = 0.85). Conventional pathology systematically overestimated tumor purity by 8% compared to digital pathology. All investigated methods agreed on classifying the deleterious BRCA1/2-mutated tumors as HRD-positive, but discrepancies were observed for some of the remaining tumors. Discordant HRD classification of 11% of the tumors was observed comparing the tumor purity uninformed default of Sequenza and the reference method. In conclusion, tumor purity is a critical factor for the determination of HRD scores. Assistance by digital pathology helps to improve accuracy and imprecision of its estimation.

7.
J Pathol Clin Res ; 9(2): 100-107, 2023 03.
Article in English | MEDLINE | ID: mdl-36635225

ABSTRACT

Intrahepatic cholangiocarcinoma harbours druggable genetic lesions including FGFR2 gene fusions. Reliable and accurate detection of these fusions is becoming a critical component of the molecular work-up, but real-world data on the performance of fluorescence in situ hybridisation (FISH) and targeted RNA-based next-generation sequencing (NGS) are very limited. Bridging this gap, we report results of the first round robin test for FGFR2 fusions in cholangiocarcinoma and contextualise test data with genomic architecture. A cohort of 10 cholangiocarcinoma (4 fusion positive and 6 fusion negative) was tested by the Institute of Pathology, University Hospital Heidelberg, Germany. Data were validated by four academic pathology departments in Germany. Fusion-positive cases comprised FGFR2::BICC1, FGFR2::DBP, FGFR2::TRIM8, and FGFR2::ATE1 fusions. In a second step, a round robin test involving 21 academic and non-academic centres testing with RNA-based NGS approaches was carried out; five participants performed FISH testing in addition. Thirteen of 16 (81%) centres successfully passed the NGS only and 3 of 5 (60%) centres passed the combined NGS + FISH round robin test. Identified obstacles were bioinformatic pipelines not optimised for the detection of FGFR2 fusions and assays not capable of detecting unknown fusion partners. This study shows the benefit of targeted RNA-NGS for the detection of FGFR2 gene fusions. Due to the marked heterogeneity of the genomic architecture of these fusions, fusion partner agnostic (i.e. open) methodological approaches that are capable of identifying yet unknown fusion partners are superior. Furthermore, we highlight pitfalls in subsequent bioinformatic analysis and limitations of FISH-based tests.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/genetics , Gene Fusion , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/genetics , High-Throughput Nucleotide Sequencing/methods , Carrier Proteins/genetics , Nerve Tissue Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics
8.
Z Gastroenterol ; 61(1): 71-75, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36379463

ABSTRACT

Immunotherapy has become the standard of care in advanced HCC but is only approved in first- or second-line treatment. We report a patient with HCC refractory to several lines of tyrosine kinase inhibitors, who was treated with Ipilimumab and Nivolumab (Ipi/Nivo) as the fourth line. The tumor responded profoundly to Ipi/Nivo. Established biomarker-predicting responses to immunotherapy, such as a high PD-L1 staining, a high combined-positive score, microsatellite instability or a high tumor mutational burden, were not detected. Potential negative predictive markers for response to immunotherapy such as CTNNB1 and TERT were present. This constellation puts the spotlight on two mutations observed here in the SET domain-containing 2 (SETD2) and low-density lipoprotein receptor-related protein 1b (LRP1B) genes, which may explain the outstanding response. Our case demonstrates that immunotherapy can be efficient in a late-line scenario, resulting in long-term survival. Further studies should prospectively evaluate the value of SETD2 and LRP1B alterations as predictors for the success of immunotherapy in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , CTLA-4 Antigen/genetics , Ipilimumab , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mutation , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor , Receptors, LDL
11.
Br J Cancer ; 127(8): 1540-1549, 2022 11.
Article in English | MEDLINE | ID: mdl-35871236

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) is a primary malignancy of the biliary tract with a dismal prognosis. Recently, several actionable genetic aberrations were identified with significant enrichment in intrahepatic CCA, including FGFR2 gene fusions with a prevalence of 10-15%. Recent clinical data demonstrate that these fusions are druggable in a second-line setting in advanced/metastatic disease and the efficacy in earlier lines of therapy is being evaluated in ongoing clinical trials. This scenario warrants standardised molecular profiling of these tumours. METHODS: A detailed analysis of the original genetic data from the FIGHT-202 trial, on which the approval of Pemigatinib was based, was conducted. RESULTS: Comparing different detection approaches and displaying representative cases, we described the genetic landscape and architecture of FGFR2 fusions in iCCA and show biological and technical aspects to be considered for their detection. We elaborated parameters, including a suggestion for annotation, that should be stated in a molecular diagnostic FGFR2 report to allow a complete understanding of the analysis performed and the information provided. CONCLUSION: This study provides a detailed presentation and dissection of the technical and biological aspects regarding FGFR2 fusion detection, which aims to support molecular pathologists, pathologists and clinicians in diagnostics, reporting of the results and decision-making.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/drug therapy , Genomics , Humans , Molecular Diagnostic Techniques , Receptor, Fibroblast Growth Factor, Type 2/genetics
12.
Genes Chromosomes Cancer ; 61(9): 551-560, 2022 09.
Article in English | MEDLINE | ID: mdl-35430765

ABSTRACT

INTRODUCTION: Chromosomal aberrations are known to drive metastatic spread, but their profile is still elusive in carcinoma of unknown primary (CUP). Therefore, the aim of this study was to characterize the chromosomal aberration pattern in CUP depending on histological and clinical features and to assess its prognostic impact together with chromothripsis, tumor mutational burden (TMB), microsatellite instability (MSI), and mutational profiles as potential prognostic biomarkers. METHODS: Chromosomal aberrations and chromothripsis were detected by methylation-based copy number variation (CNV) analysis, whereas TMB and MSI were calculated based on large next-generation sequencing (NGS) panels. Putative primaries were assigned by consensus between two independent oncologists. RESULTS: CNV losses varied depending on putative primaries and were more abundant in patients harboring TP53 mutations and/or deletions 17p. CNV loss was prognostically adverse in localized CUP treated with surgery and/or radiotherapy, but not in disseminated poor-risk CUP treated with palliative chemotherapy. CNV loss also worsened the prognosis in squamous cell CUP. Chromothripsis was detected in 18/59 (30.5%) patients without prognostic effect. TMB was highest in cases with MSI, squamous cell histology, and with lung, anal or cervical putative primaries. CONCLUSION: Overall, CNV, chromothripsis, TMB, and MSI profiles in CUP are reminiscent of biological characteristics known from other cancer entities without a unifying CUP-specific signature. Markedly, high-level CNV loss is an adverse predictive biomarker in localized but not disseminated chemotherapy-treated CUP. This implies that chromosomal losses drive CUP progression, but also increase susceptibility to chemotherapy, with both effects apparently leveling out in disseminated CUP.


Subject(s)
Carcinoma , Chromothripsis , Neoplasms, Unknown Primary , Biomarkers, Tumor/genetics , Chromosome Aberrations , DNA Copy Number Variations , Humans , Microsatellite Instability , Mutation , Neoplasms, Unknown Primary/genetics , Prognosis
13.
Genes Chromosomes Cancer ; 61(6): 303-313, 2022 06.
Article in English | MEDLINE | ID: mdl-34331337

ABSTRACT

Modern concepts in precision cancer medicine are based on increasingly complex genomic analyses and require standardized criteria for the functional evaluation and reporting of detected genomic alterations in order to assess their clinical relevance. In this article, we propose and address the necessary steps in systematic variant evaluation consisting of bioinformatic analysis, functional annotation and clinical interpretation, focusing on the latter two aspects. We discuss the role and clinical application of current variant classification systems and point out their scope and limitations. Finally, we highlight the significance of the molecular tumor board as a platform for clinical decision-making based on genomic analyses.


Subject(s)
Neoplasms , Precision Medicine , Computational Biology , Genomics , Humans , Neoplasms/genetics
14.
Gut ; 71(2): 391-401, 2022 02.
Article in English | MEDLINE | ID: mdl-33468537

ABSTRACT

OBJECTIVE: A detailed understanding of the molecular alterations in different forms of cholangiocarcinogenesis is crucial for a better understanding of cholangiocarcinoma (CCA) and may pave the way to early diagnosis and better treatment options. DESIGN: We analysed a clinicopathologically well-characterised patient cohort (n=54) with high-grade intraductal papillary (IPNB) or tubulopapillary (ITPN) neoplastic precursor lesions of the biliary tract and correlated the results with an independent non-IPNB/ITPN associated CCA cohort (n=294). The triplet sample set of non-neoplastic biliary epithelium, precursor and invasive CCA was analysed by next generation sequencing, DNA copy number and genome-wide methylation profiling. RESULTS: Patients with invasive CCA arising from IPNB/ITPN had better prognosis than patients with CCA not associated with IPNB/ITPN. ITPN was localised mostly intrahepatic, whereas IPNB was mostly of extrahepatic origin. IPNB/ITPN were equally associated with small-duct and large-duct type intrahepatic CCA. IPNB exhibited mutational profiles of extrahepatic CCA, while ITPN had significantly fewer mutations. Most mutations were shared between precursor lesions and corresponding invasive CCA but ROBO2 mutations occurred exclusively in invasive CCA and CTNNB1 mutations were mainly present in precursor lesions. In addition, IPNB and ITPN differed in their DNA methylation profiles and analyses of latent methylation components suggested that IPNB and ITPN may have different cells-of-origin. CONCLUSION: Integrative analysis revealed that IPNB and ITPN harbour distinct early genetic alterations, IPNB are enriched in mutations typical for extrahepatic CCA, whereas ITPN exhibited few genetic alterations and showed distinct epigenetic profiles. In conclusion, IPNB/ITPN may represent a distinctive, intermediate form of intrahepatic and extrahepatic cholangiocarcinogenesis.


Subject(s)
Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Carcinoma, Papillary/genetics , Cholangiocarcinoma/genetics , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Adult , Aged , Aged, 80 and over , Bile Ducts, Intrahepatic , Carcinoma, Papillary/pathology , Cholangiocarcinoma/pathology , Cohort Studies , Epigenesis, Genetic , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged
16.
Eur J Cancer ; 157: 179-189, 2021 11.
Article in English | MEDLINE | ID: mdl-34521064

ABSTRACT

BACKGROUND: Single-site carcinoma of unknown primary (CUP) is recognised as a distinct favourable subtype in the European Society of Medical Oncology (ESMO) classification. There is broad consensus that these patients are candidates for local ablative treatment strategies with surgery and/or radiotherapy, but data on their outcomes are scarce. PATIENTS AND METHODS: In this study, we have addressed the prospects of cure and prognostic factors in a retrospective cohort of 63 patients who were eligible for local treatment at our centre. RESULTS: Median event-free (EFS) and overall survival (OS) were 15.6 months and 52.5 months, respectively. Of 61 patients who received local treatment, 20 (32.8%) remained event-free over a median follow-up of 28 months. Baseline clinical parameters including affected organ, number, volume and histology of metastases had no significant impact on prognosis, whereas deleterious TP53 mutations and DNA copy number loss emerged as independent adverse risk factors with respect to EFS. Surgical treatment was associated with improved OS as compared to radiation-based therapy. CONCLUSION: Our study advocates to pursue localised treatment with surgery and/or radiotherapy whenever feasible and implies that genetic parameters might additionally determine the clinical course of single-site CUP patients.


Subject(s)
Neoplasms, Unknown Primary/therapy , Adult , Aged , Combined Modality Therapy , DNA Copy Number Variations , Female , Genes, p53 , Humans , Male , Middle Aged , Mutation , Neoplasm Metastasis , Neoplasms, Unknown Primary/genetics , Neoplasms, Unknown Primary/mortality , Neoplasms, Unknown Primary/pathology , Prognosis , Retrospective Studies
17.
Cancer Discov ; 11(11): 2780-2795, 2021 11.
Article in English | MEDLINE | ID: mdl-34112699

ABSTRACT

The clinical relevance of comprehensive molecular analysis in rare cancers is not established. We analyzed the molecular profiles and clinical outcomes of 1,310 patients (rare cancers, 75.5%) enrolled in a prospective observational study by the German Cancer Consortium that applies whole-genome/exome and RNA sequencing to inform the care of adults with incurable cancers. On the basis of 472 single and six composite biomarkers, a cross-institutional molecular tumor board provided evidence-based management recommendations, including diagnostic reevaluation, genetic counseling, and experimental treatment, in 88% of cases. Recommended therapies were administered in 362 of 1,138 patients (31.8%) and resulted in significantly improved overall response and disease control rates (23.9% and 55.3%) compared with previous therapies, translating into a progression-free survival ratio >1.3 in 35.7% of patients. These data demonstrate the benefit of molecular stratification in rare cancers and represent a resource that may promote clinical trial access and drug approvals in this underserved patient population. SIGNIFICANCE: Rare cancers are difficult to treat; in particular, molecular pathogenesis-oriented medical therapies are often lacking. This study shows that whole-genome/exome and RNA sequencing enables molecularly informed treatments that lead to clinical benefit in a substantial proportion of patients with advanced rare cancers and paves the way for future clinical trials.See related commentary by Eggermont et al., p. 2677.This article is highlighted in the In This Issue feature, p. 2659.


Subject(s)
Neoplasms , Transcriptome , Adult , Gene Expression Profiling , Genomics , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Exome Sequencing
18.
Pathologe ; 42(4): 369-379, 2021 Jul.
Article in German | MEDLINE | ID: mdl-33938987

ABSTRACT

Increasingly extensive genomic diagnostics in cancer precision medicine require uniform evaluation criteria for the classification of variants with regard to their functional and therapeutic implications. In this review we present the most important guidelines and classification systems currently used in daily clinical practice, explain their advantages and disadvantages as well as differences and similarities, and present the step-by-step, systematic process that enables successful variant interpretation.


Subject(s)
Neoplasms , Pathology, Molecular , Genomics , Humans , Medical Oncology , Mutation , Precision Medicine
19.
Genes Chromosomes Cancer ; 60(7): 489-497, 2021 07.
Article in English | MEDLINE | ID: mdl-33686791

ABSTRACT

Pancreatic cysts or dilated pancreatic ducts are often found by cross-sectional imaging, but only mucinous lesions can become malignant. Therefore, distinction between mucinous and non-mucinous lesions is crucial for adequate patient management. We performed a prospective study including targeted next generation sequencing (NGS) of cell-free DNA in the diagnostic endoscopic ultrasound (EUS)-guided workup. Pancreatic cyst(s) or main duct fluid obtained by EUS-guided FNA was analysed by carcinoembryonic antigen (CEA), cytology and deep targeted NGS of 14 known gastrointestinal cancer genes (AKT1, BRAF, CTNNB1, EGFR, ERBB2, FBXW7, GNAS, KRAS, MAP2K1, NRAS, PIK3CA, SMAD4, TP53, APC) with a limit of detection down to variant allele frequency of 0.01%. Results were correlated to histopathology and clinical follow-up. One hundred and thirteen patients with pancreatic cyst(s) and/or a dilated pancreatic main duct (≥5 mm) were screened. Sixty-six patients had to be excluded, mainly due to inoperability or small cyst size (≤10 mm). Forty-seven patients were enrolled for further analysis. A final diagnosis was available in 27 cases including 8 negative controls. In 43/47 (91.5%) of patients a KRAS- and/or GNAS-mutation was diagnosed by NGS. 27.0% of the KRAS-mutated and 10.0% of the GNAS-mutated lesions harbored multiple mutations. KRAS/GNAS-testing by NGS, cytology, and CEA had a sensitivity and specificity of 94.7/100%, 38.1/100%, and 42.1/75.0%, respectively. KRAS/GNAS-testing was significantly superior to CEA (P = .0209) and cytology (P = .0016). In conclusion, KRAS/GNAS-testing by deep targeted NGS is a suitable method to distinguish mucinous from non-mucinous pancreatic lesions, suggesting its usage as a single diagnostic test. Results must be confirmed in a larger cohort.


Subject(s)
Chromogranins/genetics , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , GTP-Binding Protein alpha Subunits, Gs/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms, Cystic, Mucinous, and Serous/genetics , Pancreatic Cyst/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Aged , Aged, 80 and over , Endoscopic Ultrasound-Guided Fine Needle Aspiration/standards , Female , Genetic Testing/methods , Genetic Testing/standards , High-Throughput Nucleotide Sequencing/standards , Humans , Male , Middle Aged , Neoplasms, Cystic, Mucinous, and Serous/diagnostic imaging , Neoplasms, Cystic, Mucinous, and Serous/pathology , Pancreatic Cyst/diagnostic imaging , Pancreatic Cyst/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Sensitivity and Specificity , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
20.
Lung Cancer ; 154: 131-141, 2021 04.
Article in English | MEDLINE | ID: mdl-33667718

ABSTRACT

OBJECTIVES: Implementation of tyrosine kinase inhibitors (TKI) and other targeted therapies was a main advance in thoracic oncology with survival gains ranging from several months to years for non-small-cell lung cancer (NSCLC) patients. High-throughput comprehensive molecular profiling is of key importance to identify patients that can potentially benefit from these novel treatments. MATERIAL AND METHODS: Next-generation sequencing (NGS) was performed on 4500 consecutive formalin-fixed, paraffin-embedded specimens of advanced NSCLC (n = 4172 patients) after automated extraction of DNA and RNA for parallel detection of mutations and gene fusions, respectively. RESULTS AND CONCLUSION: Besides the 24.9 % (n = 1040) of cases eligible for approved targeted therapies based on the presence of canonical alterations in EGFR exons 18-21, BRAF, ROS1, ALK, NTRK, and RET, an additional n = 1260 patients (30.2 %) displayed rare or non-canonical mutations in EGFR (n = 748), BRAF (n = 135), ERBB2 (n = 30), KIT (n = 32), PIK3CA (n = 221), and CTNNB1 (n = 94), for which targeted therapies could also be potentially effective. A systematic literature search in conjunction with in silico evaluation identified n = 232 (5.5 %) patients, for which a trial of targeted treatment would be warranted according to available evidence (NCT level 1, i.e. published data showing efficacy in the same tumor entity). In conclusion, a sizeable fraction of NSCLC patients harbors rare or non-canonical alterations that may be associated with clinical benefit from currently available targeted drugs. Systematic identification and individualized management of these cases can expand applicability of precision oncology in NSCLC and extend clinical gain from established molecular targets. These results can also inform clinical trials.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Precision Medicine , Protein-Tyrosine Kinases , Proto-Oncogene Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...