Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 13(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570233

ABSTRACT

Formalin is one of the most widely used and effective chemotherapeutic compounds for treatment of fungal infections and external parasites of fish eggs and fish. However, exposure to formalin can cause mortality in eggs and fingerlings, dependent upon the concentration used and the rearing conditions in which fish are treated. Additionally, strains within a species can exhibit differential susceptibility to formalin. Four experiments were conducted to evaluate the differential sensitivity to formalin of four rainbow trout (Oncorhynchus mykiss) strains in both the egg and fingerling life stages. Eggs were exposed to concentrations of 1667, 2000, and 5000 ppm formalin, and sensitivity differed among the strains when formalin concentration exceeded 2000 ppm. Exposure to higher formalin concentrations (i.e., 5000 ppm) as eggs did not increase mortality when fish were re-exposed to concentrations of 0, 167, 250, or 500 ppm formalin at 77 mm total length (TL). Fish size affected formalin sensitivity, with larger fish (128 mm TL) exhibiting higher rates of mortality than fish ≤ 77 mm TL when exposed to 250 ppm formalin. The effects of crowding, feeding, flow, and density on the formalin sensitivity of 77 mm TL fish were also investigated. Mortality increased in fish crowded away from the inflow to prevent contact with formalin as it entered the tank, potentially the result of an increase in density index within the crowded tanks. Feeding fish on the day they were treated caused mortality to increase by 5.4 to 8.8% in fish exposed to 167 and 250 ppm formalin, respectively, and mortality differed by strain. Reducing flows by half resulted in doubled to quadrupled mortality, and increased densities resulted in increased mortality in some strains but not others. Hatchery managers should consider what effect rearing conditions and formalin concentrations might have on the strain of fish being treated, prior to large-scale treatment.

2.
J Fish Dis ; 46(4): 309-319, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36606373

ABSTRACT

Vertical transmission of Renibacterium salmoninarum has been well-documented in anadromous salmonids but not in hatchery-reared inland trout. We assessed whether the bacterium is vertically transmitted in cutthroat trout (Oncorhynchus clarkii) from a Colorado, USA hatchery, and assessed the rate of transmission from male and female brood fish. Adult brood fish were killed, tested for R. salmoninarum in kidney, liver, spleen, ovarian fluid, blood and mucus samples, then stripped of gametes to create 32 families with four infection treatments (MNFN, MNFP, MPFN, MPFP; M: male, F: female, P: positive, N: negative). Progeny from each treatment was sampled at 6 and 12 months to test for the presence of R. salmoninarum with an enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Our study indicated that vertical transmission was high and occurred among 60% of families across all infection treatments. However, the average proportion of infected progeny from individual families was low, ranging from 1% (MNFP, MPFN and MPFP treatments) up to 21% (MPFP treatment). Hatcheries rearing inland salmonids would be well suited to limit vertical transmission through practices such as lethal culling because any amount of transmission can perpetuate the infection throughout fish on a hatchery.


Subject(s)
Fish Diseases , Gram-Positive Bacterial Infections , Micrococcaceae , Oncorhynchus , Female , Male , Animals , Salmon/microbiology , Gram-Positive Bacterial Infections/microbiology , Fish Diseases/microbiology , Trout
3.
Pathogens ; 9(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645920

ABSTRACT

Bacterial Kidney Disease, caused by Renibacterium salmoninarum (Rs), is widespread and can cause significant mortality at most life stages in infected salmonids. Rs is commonly found in inland trout, which can be carriers of the bacterium. Lethal spawns can be used to control vertical transmission to progeny through the culling of eggs from infected parents, but can be costly, time-consuming, and can negatively impact important and rare brood stocks. Erymicin 200 is an Investigational New Animal Drug (INAD) intended to reduce Rs levels in hatchery brood stocks and control vertical transmission to progeny. We tested the efficacy of Erymicin 200 injections in a positive, hatchery-resident rainbow trout (Oncorhynchus mykiss) brood stock in Colorado, USA. Brood fish age two and three were injected with 25 mg per kg of body weight Erymicin 200 three times prior to spawning. Erymicin 200 was effective in reducing Rs to below detectable levels in treated fish. However, both negative treated and control brood fish produced positive progeny, suggesting that Erymicin 200 did not prevent the vertical transmission of Rs.

SELECTION OF CITATIONS
SEARCH DETAIL