Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Comput Biol Med ; 176: 108588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761503

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. METHOD: Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. RESULTS: Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. CONCLUSIONS: This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lipidomics , Proteomics , Alzheimer Disease/blood , Alzheimer Disease/metabolism , Cognitive Dysfunction/blood , Cognitive Dysfunction/metabolism , Humans , Proteomics/methods , Male , Aged , Female , Lipidomics/methods , Biomarkers/blood , Biomarkers/metabolism , Animals , Disease Progression , Machine Learning , Aged, 80 and over
2.
Transl Psychiatry ; 14(1): 204, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762535

ABSTRACT

Decline in cognitive function is the most feared aspect of ageing. Poorer midlife cognitive function is associated with increased dementia and stroke risk. The mechanisms underlying variation in cognitive function are uncertain. Here, we assessed associations between 1160 proteins' plasma levels and two measures of cognitive function, the digit symbol substitution test (DSST) and the Montreal Cognitive Assessment in 1198 PURE-MIND participants. We identified five DSST performance-associated proteins (NCAN, BCAN, CA14, MOG, CDCP1), with NCAN and CDCP1 showing replicated association in an independent cohort, GS (N = 1053). MRI-assessed structural brain phenotypes partially mediated (8-19%) associations between NCAN, BCAN, and MOG, and DSST performance. Mendelian randomisation analyses suggested higher CA14 levels might cause larger hippocampal volume and increased stroke risk, whilst higher CDCP1 levels might increase intracranial aneurysm risk. Our findings highlight candidates for further study and the potential for drug repurposing to reduce the risk of stroke and cognitive decline.


Subject(s)
Brain , Cognitive Dysfunction , Magnetic Resonance Imaging , Mendelian Randomization Analysis , Proteome , Humans , Male , Female , Middle Aged , Aged , Cross-Sectional Studies , Cognitive Dysfunction/blood , Cognitive Dysfunction/genetics , Cognitive Dysfunction/diagnostic imaging , Brain/diagnostic imaging , Cognition , Stroke/genetics , Stroke/blood , Mental Status and Dementia Tests
3.
BMJ Ment Health ; 27(1)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38508686

ABSTRACT

BACKGROUND: Use of personal sensing to predict mental health risk has sparked interest in adolescent psychiatry, offering a potential tool for targeted early intervention. OBJECTIVES: We investigated the preferences and values of UK adolescents with regard to use of digital sensing information, including social media and internet searching behaviour. We also investigated the impact of risk information on adolescents' self-understanding. METHODS: Following a Design Bioethics approach, we created and disseminated a purpose-built digital game (www.tracingtomorrow.org) that immersed the player-character in a fictional scenario in which they received a risk assessment for depression Data were collected through game choices across relevant scenarios, with decision-making supported through clickable information points. FINDINGS: The game was played by 7337 UK adolescents aged 16-18 years. Most participants were willing to personally communicate mental health risk information to their parents or best friend. The acceptability of school involvement in risk predictions based on digital traces was mixed, due mainly to privacy concerns. Most participants indicated that risk information could negatively impact their academic self-understanding. Participants overwhelmingly preferred individual face-to-face over digital options for support. CONCLUSIONS: The potential of digital phenotyping in supporting early intervention in mental health can only be fulfilled if data are collected, communicated and actioned in ways that are trustworthy, relevant and acceptable to young people. CLINICAL IMPLICATIONS: To minimise the risk of ethical harms in real-world applications of preventive psychiatric technologies, it is essential to investigate young people's values and preferences as part of design and implementation processes.


Subject(s)
Mental Health , Social Media , Adolescent , Humans , Parents , Problem Solving
4.
medRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38343823

ABSTRACT

Background: In India, anemia is widely researched in children and women of reproductive age, however, studies in older populations are lacking. Given the adverse effect of anemia on cognitive function and dementia this older population group warrants further study. The Longitudinal Ageing Study in India - Harmonized Diagnostic Assessment of Dementia (LASI-DAD) dataset contains detailed measures to allow a better understanding of anaemia as a potential risk factor for dementia. Method: 2,758 respondents from the LASI-DAD cohort, aged 60 or older, had a complete blood count measured from venous blood as well as cognitive function tests including episodic memory, executive function and verbal fluency. Linear regression was used to test the associations between blood measures (including anemia and hemoglobin concentration (g/dL)) with 11 cognitive domains. All models were adjusted for age and gender with the full model containing adjustments for rural location, years of education, smoking, region, BMI and population weights.Results from LASI-DAD were validated using the USA-based Health and Retirement Study (HRS) cohort (n=5720) to replicate associations between blood cell measures and global cognition. Results: In LASI-DAD, we showed an association between anemia and poor memory (p=0.0054). We found a positive association between hemoglobin concentration and ten cognitive domains tested (ß=0.041-0.071, p<0.05). The strongest association with hemoglobin was identified for memory-based tests (immediate episodic, delayed episodic and broad domain memory, ß=0.061-0.071, p<0.005). Positive associations were also shown between the general cognitive score and the other red blood count tests including mean corpuscular hemoglobin concentration (MCHC, ß=0.06, p=0.0001) and red cell distribution width (RDW, ß =-0.11, p<0.0001). In the HRS cohort, positive associations were replicated between general cognitive score and other blood count tests (Red Blood Cell, MCHC and RDW, p<0.05). Conclusion: We have established in a large South Asian population that low hemoglobin and anaemia are associated with low cognitive function, therefore indicating that anaemia could be an important modifiable risk factor. We have validated this result in an external cohort demonstrating both the variability of this risk factor cross-nationally and its generalizable association with cognitive outcomes.

5.
Article in English | MEDLINE | ID: mdl-37566498

ABSTRACT

When the first transformer-based language models were published in the late 2010s, pretraining with general text and then fine-tuning the model on a task-specific dataset often achieved the state-of-the-art performance. However, more recent work suggests that for some tasks, directly prompting the pretrained model matches or surpasses fine-tuning in performance with few or no model parameter updates required. The use of prompts with language models for natural language processing (NLP) tasks is known as prompt learning. We investigated the viability of prompt learning on clinically meaningful decision tasks and directly compared this with more traditional fine-tuning methods. Results show that prompt learning methods were able to match or surpass the performance of traditional fine-tuning with up to 1000 times fewer trainable parameters, less training time, less training data, and lower computation resource requirements. We argue that these characteristics make prompt learning a very desirable alternative to traditional fine-tuning for clinical tasks, where the computational resources of public health providers are limited, and where data can often not be made available or not be used for fine-tuning due to patient privacy concerns. The complementary code to reproduce the experiments presented in this work can be found at https://github.com/NtaylorOX/Public_Clinical_Prompt.

6.
Sci Transl Med ; 15(705): eadf5681, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37467317

ABSTRACT

A diverse set of biological processes have been implicated in the pathophysiology of Alzheimer's disease (AD) and related dementias. However, there is limited understanding of the peripheral biological mechanisms relevant in the earliest phases of the disease. Here, we used a large-scale proteomics platform to examine the association of 4877 plasma proteins with 25-year dementia risk in 10,981 middle-aged adults. We found 32 dementia-associated plasma proteins that were involved in proteostasis, immunity, synaptic function, and extracellular matrix organization. We then replicated the association between 15 of these proteins and clinically relevant neurocognitive outcomes in two independent cohorts. We demonstrated that 12 of these 32 dementia-associated proteins were associated with cerebrospinal fluid (CSF) biomarkers of AD, neurodegeneration, or neuroinflammation. We found that eight of these candidate protein markers were abnormally expressed in human postmortem brain tissue from patients with AD, although some of the proteins that were most strongly associated with dementia risk, such as GDF15, were not detected in these brain tissue samples. Using network analyses, we found a protein signature for dementia risk that was characterized by dysregulation of specific immune and proteostasis/autophagy pathways in adults in midlife ~20 years before dementia onset, as well as abnormal coagulation and complement signaling ~10 years before dementia onset. Bidirectional two-sample Mendelian randomization genetically validated nine of our candidate proteins as markers of AD in midlife and inferred causality of SERPINA3 in AD pathogenesis. Last, we prioritized a set of candidate markers for AD and dementia risk prediction in midlife.


Subject(s)
Alzheimer Disease , Proteomics , Middle Aged , Humans , Adult , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Brain/metabolism , Biomarkers/metabolism
7.
JAMA Psychiatry ; 80(6): 597-609, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37074710

ABSTRACT

Importance: Metabolomics reflect the net effect of genetic and environmental influences and thus provide a comprehensive approach to evaluating the pathogenesis of complex diseases, such as depression. Objective: To identify the metabolic signatures of major depressive disorder (MDD), elucidate the direction of associations using mendelian randomization, and evaluate the interplay of the human gut microbiome and metabolome in the development of MDD. Design, Setting and Participants: This cohort study used data from participants in the UK Biobank cohort (n = 500 000; aged 37 to 73 years; recruited from 2006 to 2010) whose blood was profiled for metabolomics. Replication was sought in the PREDICT and BBMRI-NL studies. Publicly available summary statistics from a 2019 genome-wide association study of depression were used for the mendelian randomization (individuals with MDD = 59 851; control individuals = 113 154). Summary statistics for the metabolites were obtained from OpenGWAS in MRbase (n = 118 000). To evaluate the interplay of the metabolome and the gut microbiome in the pathogenesis of depression, metabolic signatures of the gut microbiome were obtained from a 2019 study performed in Dutch cohorts. Data were analyzed from March to December 2021. Main Outcomes and Measures: Outcomes were lifetime and recurrent MDD, with 249 metabolites profiled with nuclear magnetic resonance spectroscopy with the Nightingale platform. Results: The study included 6811 individuals with lifetime MDD compared with 51 446 control individuals and 4370 individuals with recurrent MDD compared with 62 508 control individuals. Individuals with lifetime MDD were younger (median [IQR] age, 56 [49-62] years vs 58 [51-64] years) and more often female (4447 [65%] vs 2364 [35%]) than control individuals. Metabolic signatures of MDD consisted of 124 metabolites spanning the energy and lipid metabolism pathways. Novel findings included 49 metabolites, including those involved in the tricarboxylic acid cycle (ie, citrate and pyruvate). Citrate was significantly decreased (ß [SE], -0.07 [0.02]; FDR = 4 × 10-04) and pyruvate was significantly increased (ß [SE], 0.04 [0.02]; FDR = 0.02) in individuals with MDD. Changes observed in these metabolites, particularly lipoproteins, were consistent with the differential composition of gut microbiota belonging to the order Clostridiales and the phyla Proteobacteria/Pseudomonadota and Bacteroidetes/Bacteroidota. Mendelian randomization suggested that fatty acids and intermediate and very large density lipoproteins changed in association with the disease process but high-density lipoproteins and the metabolites in the tricarboxylic acid cycle did not. Conclusions and Relevance: The study findings showed that energy metabolism was disturbed in individuals with MDD and that the interplay of the gut microbiome and blood metabolome may play a role in lipid metabolism in individuals with MDD.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Humans , Female , Middle Aged , Gastrointestinal Microbiome/genetics , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Genome-Wide Association Study , Cohort Studies , Metabolome , Citrates/pharmacology , Pyruvates/pharmacology
8.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Article in English | MEDLINE | ID: mdl-36790009

ABSTRACT

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Multiomics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
9.
Front Aging Neurosci ; 14: 1040001, 2022.
Article in English | MEDLINE | ID: mdl-36523958

ABSTRACT

Background and objective: Blood-based biomarkers represent a promising approach to help identify early Alzheimer's disease (AD). Previous research has applied traditional machine learning (ML) to analyze plasma omics data and search for potential biomarkers, but the most modern ML methods based on deep learning has however been scarcely explored. In the current study, we aim to harness the power of state-of-the-art deep learning neural networks (NNs) to identify plasma proteins that predict amyloid, tau, and neurodegeneration (AT[N]) pathologies in AD. Methods: We measured 3,635 proteins using SOMAscan in 881 participants from the European Medical Information Framework for AD Multimodal Biomarker Discovery study (EMIF-AD MBD). Participants underwent measurements of brain amyloid ß (Aß) burden, phosphorylated tau (p-tau) burden, and total tau (t-tau) burden to determine their AT(N) statuses. We ranked proteins by their association with Aß, p-tau, t-tau, and AT(N), and fed the top 100 proteins along with age and apolipoprotein E (APOE) status into NN classifiers as input features to predict these four outcomes relevant to AD. We compared NN performance of using proteins, age, and APOE genotype with performance of using age and APOE status alone to identify protein panels that optimally improved the prediction over these main risk factors. Proteins that improved the prediction for each outcome were aggregated and nominated for pathway enrichment and protein-protein interaction enrichment analysis. Results: Age and APOE alone predicted Aß, p-tau, t-tau, and AT(N) burden with area under the curve (AUC) scores of 0.748, 0.662, 0.710, and 0.795. The addition of proteins significantly improved AUCs to 0.782, 0.674, 0.734, and 0.831, respectively. The identified proteins were enriched in five clusters of AD-associated pathways including human immunodeficiency virus 1 infection, p53 signaling pathway, and phosphoinositide-3-kinase-protein kinase B/Akt signaling pathway. Conclusion: Combined with age and APOE genotype, the proteins identified have the potential to serve as blood-based biomarkers for AD and await validation in future studies. While the NNs did not achieve better scores than the support vector machine model used in our previous study, their performances were likely limited by small sample size.

10.
Article in English | MEDLINE | ID: mdl-36109050

ABSTRACT

INTRODUCTION: Type 2 diabetes is a risk factor for dementia and Parkinson's disease (PD). Drug treatments for diabetes, such as metformin, could be used as novel treatments for these neurological conditions. Using electronic health records from the USA (OPTUM EHR) we aimed to assess the association of metformin with all-cause dementia, dementia subtypes and PD compared with sulfonylureas. RESEARCH DESIGN AND METHODS: A new user comparator study design was conducted in patients ≥50 years old with diabetes who were new users of metformin or sulfonylureas between 2006 and 2018. Primary outcomes were all-cause dementia and PD. Secondary outcomes were Alzheimer's disease (AD), vascular dementia (VD) and mild cognitive impairment (MCI). Cox proportional hazards models with inverse probability of treatment weighting (IPTW) were used to estimate the HRs. Subanalyses included stratification by age, race, renal function, and glycemic control. RESULTS: We identified 96 140 and 16 451 new users of metformin and sulfonylureas, respectively. Mean age was 66.4±8.2 years (48% male, 83% Caucasian). Over the 5-year follow-up, 3207 patients developed all-cause dementia (2256 (2.3%) metformin, 951 (5.8%) sulfonylurea users) and 760 patients developed PD (625 (0.7%) metformin, 135 (0.8%) sulfonylurea users). After IPTW, HRs for all-cause dementia and PD were 0.80 (95% CI 0.73 to 0.88) and 1.00 (95% CI 0.79 to 1.28). HRs for AD, VD and MCI were 0.81 (0.70-0.94), 0.79 (0.63-1.00) and 0.91 (0.79-1.04). Stronger associations were observed in patients who were younger (<75 years old), Caucasian, and with moderate renal function. CONCLUSIONS: Metformin users compared with sulfonylurea users were associated with a lower risk of all-cause dementia, AD and VD but not with PD or MCI. Age and renal function modified risk reduction. Our findings support the hypothesis that metformin provides more neuroprotection for dementia than sulfonylureas but not for PD, but further work is required to assess causality.


Subject(s)
Dementia , Diabetes Mellitus, Type 2 , Metformin , Parkinson Disease , Aged , Dementia/epidemiology , Dementia/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Hypoglycemic Agents/adverse effects , Male , Metformin/adverse effects , Middle Aged , Parkinson Disease/complications , Parkinson Disease/drug therapy , Parkinson Disease/epidemiology , Sulfonylurea Compounds/adverse effects
11.
Nat Commun ; 13(1): 4670, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945220

ABSTRACT

Characterising associations between the methylome, proteome and phenome may provide insight into biological pathways governing brain health. Here, we report an integrated DNA methylation and phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association studies of 4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein associations after adjustment for multiple testing. These are independent of known genetic protein quantitative trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein are then performed in relation to 15 neurological traits (N = 1,065), identifying 405 associations between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain health. The epigenetic and proteomic markers we identify are pertinent to understanding and stratifying brain health.


Subject(s)
Genome-Wide Association Study , Proteome , Biomarkers/metabolism , Brain/metabolism , CpG Islands/genetics , DNA Methylation/genetics , Epigenome , Proteome/genetics , Proteome/metabolism , Proteomics
12.
Alzheimers Dement (Amst) ; 14(1): e12280, 2022.
Article in English | MEDLINE | ID: mdl-35475137

ABSTRACT

Introduction: The levels of many blood proteins are associated with Alzheimer's disease (AD) or its pathological hallmarks. Elucidating the molecular factors that control circulating levels of these proteins may help to identify proteins associated with disease risk mechanisms. Methods: Genome-wide and epigenome-wide studies (nindividuals ≤1064) were performed on plasma levels of 282 AD-associated proteins, identified by a structured literature review. Bayesian penalized regression estimated contributions of genetic and epigenetic variation toward inter-individual differences in plasma protein levels. Mendelian randomization (MR) and co-localization tested associations between proteins and disease-related phenotypes. Results: Sixty-four independent genetic and 26 epigenetic loci were associated with 45 proteins. Novel findings included an association between plasma triggering receptor expressed on myeloid cells 2 (TREM2) levels and a polymorphism and cytosine-phosphate-guanine (CpG) site within the MS4A4A locus. Higher plasma tubulin-specific chaperone A (TBCA) and TREM2 levels were significantly associated with lower AD risk. Discussion: Our data inform the regulation of biomarker levels and their relationships with AD.

13.
Brain Behav ; 12(5): e2525, 2022 05.
Article in English | MEDLINE | ID: mdl-35362209

ABSTRACT

BACKGROUND: Hypertension is a well-established risk factor for cognitive impairment, brain atrophy, and dementia. However, the relationship of other types of hypertensions, such as isolated hypertension on brain health and its comparison to systolic-diastolic hypertension (where systolic and diastolic measures are high), is still relatively unknown. Due to its increased prevalence, it is important to investigate the impact of isolated hypertension to help understand its potential impact on cognitive decline and future dementia risk. In this study, we compared a variety of global brain measures between participants with isolated hypertension to those with normal blood pressure (BP) or systolic-diastolic hypertension using the largest cohort of healthy individuals. METHODS: Using the UK Biobank cohort, we carried out a cross-sectional study using 29,775 participants (mean age 63 years, 53% female) with BP measurements and brain magnetic resonance imaging (MRI) data. We used linear regression models adjusted for multiple confounders to compare a variety of global, subcortical, and white matter brain measures. We compared participants with either isolated systolic or diastolic hypertension with normotensives and then with participants with systolic-diastolic hypertension. RESULTS: The results showed that participants with isolated systolic or diastolic hypertension taking BP medications had smaller gray matter but larger white matter microstructures and macrostructures compared to normotensives. Isolated systolic hypertensives had larger total gray matter and smaller white matter traits when comparing these regions with participants with systolic-diastolic hypertension. CONCLUSIONS: These results provide support to investigate possible preventative strategies that target isolated hypertension as well as systolic-diastolic hypertension to maintain brain health and/or reduce dementia risk earlier in life particularly in white matter regions.


Subject(s)
Dementia , Hypertension , Biological Specimen Banks , Blood Pressure/physiology , Brain , Cross-Sectional Studies , Dementia/diagnostic imaging , Dementia/epidemiology , Female , Humans , Hypertension/diagnostic imaging , Hypertension/epidemiology , Hypertension/pathology , Magnetic Resonance Imaging , Male , Middle Aged , United Kingdom/epidemiology
14.
Int J Med Inform ; 160: 104704, 2022 04.
Article in English | MEDLINE | ID: mdl-35168089

ABSTRACT

UK Biobank (UKB) is widely employed to investigate mental health disorders and related exposures; however, its applicability and relevance in a clinical setting and the assumptions required have not been sufficiently and systematically investigated. Here, we present the first validation study using secondary care mental health data with linkage to UKB from Oxford - Clinical Record Interactive Search (CRIS) focusing on comparison of demographic information, diagnostic outcome, medication record and cognitive test results, with missing data and the implied bias from both resources depicted. We applied a natural language processing model to extract information embedded in unstructured text from clinical notes and attachments. Using a contingency table we compared the demographic information recorded in UKB and CRIS. We calculated the positive predictive value (PPV, proportion of true positives cases detected) for mental health diagnosis and relevant medication. Amongst the cohort of 854 subjects, PPVs for any mental health diagnosis for dementia, depression, bipolar disorder and schizophrenia were 41.6%, and were 59.5%, 12.5%, 50.0% and 52.6%, respectively. Self-reported medication records in UKB had general PPV of 47.0%, with the prevalence of frequently prescribed medicines to each typical mental health disorder considerably different from the information provided by CRIS. UKB is highly multimodal, but with limited follow-up records, whereas CRIS offers a longitudinal high-resolution clinical picture with more than ten years of observations. The linkage of both datasets will reduce the self-report bias and synergistically augment diverse modalities into a unified resource to facilitate more robust research in mental health.


Subject(s)
Electronic Health Records , Mental Health , Biological Specimen Banks , Humans , Pilot Projects , Secondary Care , United Kingdom/epidemiology
15.
BMC Med ; 20(1): 45, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35101059

ABSTRACT

BACKGROUND: Donepezil, galantamine, rivastigmine and memantine are potentially effective interventions for cognitive impairment in dementia, but the use of these drugs has not been personalised to individual patients yet. We examined whether artificial intelligence-based recommendations can identify the best treatment using routinely collected patient-level information. METHODS: Six thousand eight hundred four patients aged 59-102 years with a diagnosis of dementia from two National Health Service (NHS) Foundation Trusts in the UK were used for model training/internal validation and external validation, respectively. A personalised prescription model based on the Recurrent Neural Network machine learning architecture was developed to predict the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores post-drug initiation. The drug that resulted in the smallest decline in cognitive scores between prescription and the next visit was selected as the treatment of choice. Change of cognitive scores up to 2 years after treatment initiation was compared for model evaluation. RESULTS: Overall, 1343 patients with MMSE scores were identified for internal validation and 285 [21.22%] took the drug recommended. After 2 years, the reduction of mean [standard deviation] MMSE score in this group was significantly smaller than the remaining 1058 [78.78%] patients (0.60 [0.26] vs 2.80 [0.28]; P = 0.02). In the external validation cohort (N = 1772), 222 [12.53%] patients took the drug recommended and reported a smaller MMSE reduction compared to the 1550 [87.47%] patients who did not (1.01 [0.49] vs 4.23 [0.60]; P = 0.01). A similar performance gap was seen when testing the model on patients prescribed with AChEIs only. CONCLUSIONS: It was possible to identify the most effective drug for the real-world treatment of cognitive impairment in dementia at an individual patient level. Routine care patients whose prescribed medications were the best fit according to the model had better cognitive performance after 2 years.


Subject(s)
Cognitive Dysfunction , Dementia , Aged , Aged, 80 and over , Artificial Intelligence , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/drug therapy , Dementia/diagnosis , Dementia/drug therapy , Dementia/psychology , Humans , Middle Aged , Neuropsychological Tests , Precision Medicine , State Medicine
16.
Biomedicines ; 9(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34829839

ABSTRACT

BACKGROUND: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives. METHODS: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites' discriminatory performance in AD. RESULTS: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046). CONCLUSIONS: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.

17.
J Alzheimers Dis ; 84(3): 1373-1389, 2021.
Article in English | MEDLINE | ID: mdl-34690138

ABSTRACT

BACKGROUND: Mid-life hypertension is an established risk factor for cognitive impairment and dementia and related to greater brain atrophy and poorer cognitive performance. Previous studies often have small sample sizes from older populations that lack utilizing multiple measures to define hypertension such as blood pressure, self-report information, and medication use; furthermore, the impact of the duration of hypertension is less extensively studied. OBJECTIVE: To investigate the relationship between hypertension defined using multiple measures and length of hypertension with brain measure and cognition. METHODS: Using participants from the UK Biobank MRI visit with blood pressure measurements (n = 31,513), we examined the cross-sectional relationships between hypertension and duration of hypertension with brain volumes and cognitive tests using generalized linear models adjusted for confounding. RESULTS: Compared with normotensives, hypertensive participants had smaller brain volumes, larger white matter hyperintensities (WMH), and poorer performance on cognitive tests. For total brain, total grey, and hippocampal volumes, those with greatest duration of hypertension had the smallest brain volumes and the largest WMH, ventricular cerebrospinal fluid volumes. For other subcortical and white matter microstructural regions, there was no clear relationship. There were no significant associations between duration of hypertension and cognitive tests. CONCLUSION: Our results show hypertension is associated with poorer brain and cognitive health however, the impact of duration since diagnosis warrants further investigation. This work adds further insights by using multiple measures defining hypertension and analysis on duration of hypertension which is a substantial advance on prior analyses-particularly those in UK Biobank which present otherwise similar analyses on smaller subsets.


Subject(s)
Biological Specimen Banks , Cognitive Dysfunction , Hypertension/epidemiology , Image Processing, Computer-Assisted , Neuropsychological Tests/statistics & numerical data , Aged , Aged, 80 and over , Atrophy/pathology , Brain/pathology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/pathology , Cross-Sectional Studies , Female , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Risk Factors , United Kingdom/epidemiology , White Matter/pathology
18.
Alzheimers Dement (Amst) ; 13(1): e12240, 2021.
Article in English | MEDLINE | ID: mdl-34604499

ABSTRACT

INTRODUCTION: This study aims to first discover plasma proteomic biomarkers relating to neurodegeneration (N) and vascular (V) damage in cognitively normal individuals and second to discover proteins mediating sex-related difference in N and V pathology. METHODS: Five thousand and thirty-two plasma proteins were measured in 1061 cognitively normal individuals (628 females and 433 males), nearly 90% of whom had magnetic resonance imaging measures of hippocampal volume (as N) and white matter hyperintensities (as V). RESULTS: Differential protein expression analysis and co-expression network analysis revealed different proteins and modules associated with N and V, respectively. Furthermore, causal mediation analysis revealed four proteins mediated sex-related difference in N and one protein mediated such difference in V damage. DISCUSSION: Once validated, the identified proteins could help to select cognitively normal individuals with N and V pathology for Alzheimer's disease clinical trials and provide targets for further mechanistic studies on brain sex differences, leading to sex-specific therapeutic strategies.

19.
Int J Geriatr Psychiatry ; 37(1)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34564898

ABSTRACT

OBJECTIVES: Evidence in mouse models has found that the antidepressant trazodone may be protective against neurodegeneration. We therefore aimed to compare cognitive decline of people with dementia taking trazodone with those taking other antidepressants. METHODS: Three identical naturalistic cohort studies using UK clinical registers. We included all people with dementia assessed during 2008-16 who were recorded taking trazodone, citalopram or mirtazapine for at least 6 weeks. Linear mixed models examined age, time and sex-adjusted Mini-mental state examination (MMSE) change in people with all-cause dementia taking trazodone compared with those taking citalopram and mirtazapine. In secondary analyses, we examined those with non-vascular dementia; mild dementia; and adjusted results for neuropsychiatric symptoms. We combined results from the three study sites using random-effects meta-analysis. RESULTS: We included 2,199 people with dementia, including 406 taking trazodone, with mean 2.2 years follow-up. There was no difference in adjusted cognitive decline in people with all-cause or non-vascular dementia taking trazodone, citalopram or mirtazapine in any of the three study sites. When data from the three sites were combined in meta-analysis, we found greater mean MMSE decline in people with all-cause dementia taking trazodone compared to those taking citalopram (0·26 points per successive MMSE measurement, 95% CI 0·03-0·49; p = 0·03). Results in sensitivity analyses were consistent with primary analyses. CONCLUSIONS: There was no evidence of cognitive benefit from trazodone compared to other antidepressants in people with dementia in three naturalistic cohort studies. Despite preclinical evidence, trazodone should not be advocated for cognition in dementia.

20.
Artif Intell Med ; 118: 102086, 2021 08.
Article in English | MEDLINE | ID: mdl-34412834

ABSTRACT

Electronic health record systems are ubiquitous and the majority of patients' data are now being collected electronically in the form of free text. Deep learning has significantly advanced the field of natural language processing and the self-supervised representation learning and the transfer learning have become the methods of choice in particular when the high quality annotated data are limited. Identification of medical concepts and information extraction is a challenging task, yet important ingredient for parsing unstructured data into structured and tabulated format for downstream analytical tasks. In this work we introduced a named-entity recognition (NER) model for clinical natural language processing. The model is trained to recognise seven categories: drug names, route of administration, frequency, dosage, strength, form, duration. The model was first pre-trained on the task of predicting the next word, using a collection of 2 million free-text patients' records from MIMIC-III corpora followed by fine-tuning on the named-entity recognition task. The model achieved a micro-averaged F1 score of 0.957 across all seven categories. Additionally, we evaluated the transferability of the developed model using the data from the Intensive Care Unit in the US to secondary care mental health records (CRIS) in the UK. A direct application of the trained NER model to CRIS data resulted in reduced performance of F1 = 0.762, however after fine-tuning on a small sample from CRIS, the model achieved a reasonable performance of F1 = 0.944. This demonstrated that despite a close similarity between the data sets and the NER tasks, it is essential to fine-tune the target domain data in order to achieve more accurate results. The resulting model and the pre-trained embeddings are available at https://github.com/kormilitzin/med7.


Subject(s)
Electronic Health Records , Natural Language Processing , Humans , Information Storage and Retrieval , Intensive Care Units
SELECTION OF CITATIONS
SEARCH DETAIL
...