Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Viruses ; 16(1)2024 01 22.
Article in English | MEDLINE | ID: mdl-38275971

ABSTRACT

Severe cases of SARS-CoV-2 infection are characterized by an immune response that leads to the overproduction of pro-inflammatory cytokines, resulting in lung damage, cardiovascular symptoms, hematologic symptoms, acute kidney injury and multiple organ failure that can lead to death. This remarkable increase in cytokines and other inflammatory molecules is primarily caused by viral proteins, and particular interest has been given to ORF8, a unique accessory protein specific to SARS-CoV-2. Despite plenty of research, the precise mechanisms by which ORF8 induces proinflammatory cytokines are not clear. Our investigations demonstrated that ORF8 augments production of IL-6 induced by Poly(I:C) in human embryonic kidney (HEK)-293 and monocyte-derived dendritic cells (mono-DCs). We discuss our findings and the multifaceted roles of ORF8 as a modulator of cytokine response, focusing on type I interferon and IL-6, a key component of the immune response to SARS-CoV-2. In addition, we explore the hypothesis that ORF8 may act through pattern recognition receptors of dsRNA such as TLRs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cytokines , HEK293 Cells , Interleukin-6
3.
PLoS One ; 17(11): e0277953, 2022.
Article in English | MEDLINE | ID: mdl-36441804

ABSTRACT

The human cytomegalovirus (HCMV) UL111A gene encodes several homologs of the cellular interleukin 10 (cIL-10). Alternative splicing in the UL111A region produces two relatively well-characterized transcripts designated cmvIL-10 (isoform A) and LAcmvIL-10 (isoform B). The cmvIL-10 protein is the best characterized, both structurally and functionally, and has many immunosuppressive activities similar to cIL-10, while LAcmvIL-10 has more restricted biological activities. Alternative splicing also results in five less studied UL111A transcripts encoding additional proteins homologous to cIL-10 (isoforms C to G). These transcripts were identified during productive HCMV infection of MRC-5 cells with the high passage laboratory adapted AD169 strain, and the structure and properties of the corresponding proteins are largely unknown. Moreover, it is unclear whether these protein isoforms are able to bind the cellular IL-10 receptor and induce signalling. In the present study, we investigated the expression spectrum of UL111A transcripts in fully permissive MRC-5 cells and semi permissive U251 cells infected with the low passage HCMV strain TB40E. We identified a new spliced transcript (H) expressed during productive infection. Using computational methods, we carried out molecular modelling studies on the three-dimensional structures of the HCMV IL-10 proteins encoded by the transcripts detected in our work (cmvIL-10 (A), LAcmvIL-10 (B), E, F and H) and on their interaction with the human IL-10 receptor (IL-10R1). The modelling predicts clear differences between the isoform structures. Furthermore, the in silico simulations (molecular dynamics simulation and normal-mode analyses) allowed us to evaluate regions that contain potential receptor binding sites in each isoform. The analyses demonstrate that the complexes between the isoforms and IL-10R1 present different types of molecular interactions and consequently different affinities and stabilities. The knowledge about structure and expression of specific viral IL-10 isoforms has implications for understanding of their properties and role in HCMV immune evasion and pathogenesis.


Subject(s)
Cytomegalovirus , Humans , Cytomegalovirus/genetics , Interleukin-10/genetics , Molecular Dynamics Simulation , Protein Isoforms/genetics , Receptors, Interleukin-10/genetics
4.
Virology ; 566: 114-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34902730

ABSTRACT

This communication summarizes the presentations given at the 1st international conference of the World Society for Virology (WSV) held virtually during 16-18 June 2021, under the theme of tackling global viral epidemics. The purpose of this biennial meeting is to foster international collaborations and address important viral epidemics in different hosts. The first day included two sessions exclusively on SARS-CoV-2 and COVID-19. The other two days included one plenary and three parallel sessions each. Last not least, 16 sessions covered 140 on-demand submitted talks. In total, 270 scientists from 49 countries attended the meeting, including 40 invited keynote speakers.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Congresses as Topic , SARS-CoV-2 , Humans , Societies, Scientific , Virology
6.
Exp Results ; 2: e6, 2021.
Article in English | MEDLINE | ID: mdl-34192227

ABSTRACT

Severe COVID-19 cases place immediate pressure on hospital resources. To assess this, we analysed survival duration in the first 39 fatal cases in Wuhan, China. Time from onset and hospitalization to death declined rapidly, from ~40 to 7 days, and ~25 to 4 days, respectively, in the outbreak's first month.

7.
Exp Results ; 2: e15, 2021.
Article in English | MEDLINE | ID: mdl-34192228

ABSTRACT

COVID-19 is causing a significant burden on medical and healthcare resources globally due to high numbers of hospitalisations and deaths recorded as the pandemic continues. This research aims to assess the effects of climate factors (i.e., daily average temperature and average relative humidity) on effective reproductive number of COVID-19 outbreak in Wuhan, China during the early stage of the outbreak. Our research showed that effective reproductive number of COVID-19 will increase by 7.6% (95% Confidence Interval: 5.4% ~ 9.8%) per 1°C drop in mean temperature at prior moving average of 0-8 days lag in Wuhan, China. Our results indicate temperature was negatively associated with COVID-19 transmissibility during early stages of the outbreak in Wuhan, suggesting temperature is likely to effect COVID-19 transmission. These results suggest increased precautions should be taken in the colder seasons to reduce COVID-19 transmission in the future, based on past success in controlling the pandemic in Wuhan, China.

8.
Front Cell Infect Microbiol ; 10: 577428, 2020.
Article in English | MEDLINE | ID: mdl-33117732

ABSTRACT

Tethering of viral genomes to host chromosomes has been recognized in a variety of DNA and RNA viruses. It can occur during both the productive cycle and latent infection and may impact viral genomes in manifold ways including their protection, localization, transcription, replication, integration, and segregation. Tethering is typically accomplished by dedicated viral proteins that simultaneously associate with both the viral genome and cellular chromatin via nucleic acid, histone and/or non-histone protein interactions. Some of the most prominent tethering proteins have been identified in DNA viruses establishing sustained latent infections, including members of the papillomaviruses and herpesviruses. Herpesvirus particles have linear genomes that circularize in infected cell nuclei and usually persist as extrachromosomal episomes. In several γ-herpesviruses, tethering facilitates the nuclear retention and faithful segregation of viral episomes during cell division, thus contributing to persistence of these viruses in the absence of infectious particle production. However, it has not been studied whether the genomes of human Cytomegalovirus (hCMV), the prototypical ß-herpesvirus, are tethered to host chromosomes. Here we provide evidence by fluorescence in situ hybridization that hCMV genomes associate with the surface of human mitotic chromosomes following infection of both non-permissive myeloid and permissive fibroblast cells. This chromosome association occurs at lower frequency in the absence of the immediate-early 1 (IE1) proteins, which bind to histones and have been implicated in the maintenance of hCMV episomes. Our findings point to a mechanism of hCMV genome maintenance through mitosis and suggest a supporting but non-essential role of IE1 in this process.


Subject(s)
Cytomegalovirus , Immediate-Early Proteins , Chromosomes , Cytomegalovirus/genetics , Humans , Immediate-Early Proteins/genetics , In Situ Hybridization, Fluorescence , Viral Proteins
9.
mBio ; 11(5)2020 09 29.
Article in English | MEDLINE | ID: mdl-32994332

ABSTRACT

The genomes of DNA tumor viruses regain nuclear localization after nuclear envelope breakdown during mitosis through the action of a viral protein with a chromatin-tethering domain (CTD). Here, we report that the human cytomegalovirus (HCMV) genome is maintained during mitosis by the CTD of the viral IE19 protein. Deletion of the IE19 CTD or disruption of the IE19 splice acceptor site reduced viral genome maintenance and progeny virion formation during infection of dividing fibroblasts, both of which were rescued by IE19 ectopic expression. The discovery of a viral genome maintenance factor during productive infection provides new insight into the mode of HCMV infection implicated in birth defects, organ transplant failure, and cancer.IMPORTANCE Human cytomegalovirus (HCMV) is the leading infectious cause of birth defects, represents a serious complication for immunocompromised HIV/AIDS and organ transplant patients, and contributes to both immunosenescence and cardiovascular diseases. HCMV is also implicated in cancers such as glioblastoma multiforme (GBM) and infects ex vivo-cultured GBM tumor cells. In dividing tumor cells, the genomes of DNA tumor viruses regain nuclear localization after nuclear envelope breakdown during mitosis. This mitotic survival is mediated by a viral protein with a chromatin-tethering domain (CTD). Here, we report that the HCMV genome is maintained in dividing fibroblasts by the CTD of the viral IE19 protein. The discovery of a viral genome maintenance factor during productive infection could help explain viral genome dynamics within HCMV-positive tumors as well as during latency.


Subject(s)
Chromatin/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Genome, Viral , Immediate-Early Proteins/genetics , Mitosis/genetics , Cell Line , Cells, Cultured , Chromatin/genetics , Fibroblasts/virology , HEK293 Cells , Host-Pathogen Interactions , Humans
10.
PLoS Pathog ; 16(5): e1008537, 2020 05.
Article in English | MEDLINE | ID: mdl-32365141

ABSTRACT

Promyelocytic leukemia (PML) bodies are nuclear organelles implicated in intrinsic and innate antiviral defense. The eponymous PML proteins, central to the self-organization of PML bodies, and other restriction factors found in these organelles are common targets of viral antagonism. The 72-kDa immediate-early protein 1 (IE1) is the principal antagonist of PML bodies encoded by the human cytomegalovirus (hCMV). IE1 is believed to disrupt PML bodies by inhibiting PML SUMOylation, while PML was proposed to act as an E3 ligase for IE1 SUMOylation. PML targeting by IE1 is considered to be crucial for hCMV replication at low multiplicities of infection, in part via counteracting antiviral gene induction linked to the cellular interferon (IFN) response. However, current concepts of IE1-PML interaction are largely derived from mutant IE1 proteins known or predicted to be metabolically unstable and globally misfolded. We performed systematic clustered charge-to-alanine scanning mutagenesis and identified a stable IE1 mutant protein (IE1cc172-176) with wild-type characteristics except for neither interacting with PML proteins nor inhibiting PML SUMOylation. Consequently, IE1cc172-176 does not associate with PML bodies and is selectively impaired for disrupting these organelles. Surprisingly, functional analysis of IE1cc172-176 revealed that the protein is hypermodified by mixed SUMO chains and that IE1 SUMOylation depends on nucleosome rather than PML binding. Furthermore, a mutant hCMV expressing IE1cc172-176 was only slightly attenuated compared to an IE1-null virus even at low multiplicities of infection. Finally, hCMV-induced expression of cytokine and IFN-stimulated genes turned out to be reduced rather than increased in the presence of IE1cc172-176 relative to wild-type IE1. Our findings challenge present views on the relationship of IE1 with PML and the role of PML in hCMV replication. This study also provides initial evidence for the idea that disruption of PML bodies upon viral infection is linked to activation rather than inhibition of innate immunity.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus/physiology , Immediate-Early Proteins , Immunity, Innate , Promyelocytic Leukemia Protein , Virus Replication , Cell Line , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/pathology , Gene Expression Regulation, Viral/immunology , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/immunology , Mutation , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/immunology , Sumoylation/immunology , Virus Replication/genetics , Virus Replication/immunology
11.
mBio ; 11(2)2020 03 17.
Article in English | MEDLINE | ID: mdl-32184235

ABSTRACT

Human adenoviruses (HAdVs) have developed mechanisms to manipulate cellular antiviral measures to ensure proper DNA replication, with detailed processes far from being understood. Host cells repress incoming viral genomes through a network of transcriptional regulators that normally control cellular homeostasis. The nuclear domains involved are promyelocytic leukemia protein nuclear bodies (PML-NBs), interferon-inducible, dot-like nuclear structures and hot spots of SUMO posttranslational modification (PTM). In HAdV-infected cells, such SUMO factories are found in close proximity to newly established viral replication centers (RCs) marked by the adenoviral DNA binding protein (DBP) E2A. Here, we show that E2A is a novel target of host SUMOylation, leading to PTMs supporting E2A function in promoting productive infection. Our data show that SUMOylated E2A interacts with PML. Decreasing SUMO-E2A protein levels by generating HAdV variants mutated in the three main SUMO conjugation motifs (SCMs) led to lower numbers of viral RCs and PML-NBs, and these two structures were no longer next to each other. Our data further indicate that SUMOylated E2A binds the host transcription factor Sp100A, promoting HAdV gene expression, and represents the molecular bridge between PML tracks and adjacent viral RCs. Consequently, E2A SCM mutations repressed late viral gene expression and progeny production. These data highlight a novel mechanism used by the virus to benefit from host antiviral responses by exploiting the cellular SUMO conjugation machinery.IMPORTANCE PML nuclear bodies (PML-NBs) are implicated in general antiviral defense based on recruiting host restriction factors; however, it is not understood so far why viruses would establish viral replication centers (RCs) juxtaposed to such "antiviral" compartments. To understand this enigma, we investigate the cross talk between PML-NB components and viral RCs to find the missing link connecting both compartments to promote efficient viral replication and gene expression. Taken together, the current concept is more intricate than originally believed, since viruses apparently take advantage of several specific PML-NB-associated proteins to promote productive infection. Simultaneously, they efficiently inhibit antiviral measures to maintain the viral infectious program. Our data provide evidence that SUMOylation of the viral RC marker protein E2A represents the basis of this virus-host interface and regulates various downstream events to support HAdV productive infection. These results are the basis of our current attempts to generate and screen for specific E2A SUMOylation inhibitors to constitute novel therapeutic approaches to limit and prevent HAdV-mediated diseases and mortality of immunosuppressed patients.


Subject(s)
Adenovirus E2 Proteins/metabolism , Host-Pathogen Interactions , Promyelocytic Leukemia Protein/metabolism , Sumoylation , Viral Proteins/metabolism , Virus Replication , Adenovirus E2 Proteins/genetics , Adenoviruses, Human/physiology , Cell Line , Humans , Mutation , Promyelocytic Leukemia Protein/genetics , Protein Processing, Post-Translational , Viral Proteins/genetics
12.
Viruses ; 12(1)2020 01 16.
Article in English | MEDLINE | ID: mdl-31963209

ABSTRACT

The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. "Bright and early" events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.


Subject(s)
Cytomegalovirus/genetics , Gene Expression Regulation, Viral , Genes, Immediate-Early/genetics , Immediate-Early Proteins/metabolism , Antiviral Agents/therapeutic use , CRISPR-Cas Systems , Cytomegalovirus/drug effects , Cytomegalovirus Infections/therapy , Humans , Immediate-Early Proteins/drug effects , Immediate-Early Proteins/genetics , RNA Interference , RNA, Catalytic/drug effects , RNA, Catalytic/genetics , Viral Proteins/drug effects , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
13.
Mol Cell ; 71(5): 745-760.e5, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193098

ABSTRACT

DNA damage can be sensed as a danger-associated molecular pattern by the innate immune system. Here we find that keratinocytes and other human cells mount an innate immune response within hours of etoposide-induced DNA damage, which involves the DNA sensing adaptor STING but is independent of the cytosolic DNA receptor cGAS. This non-canonical activation of STING is mediated by the DNA binding protein IFI16, together with the DNA damage response factors ATM and PARP-1, resulting in the assembly of an alternative STING signaling complex that includes the tumor suppressor p53 and the E3 ubiquitin ligase TRAF6. TRAF6 catalyzes the formation of K63-linked ubiquitin chains on STING, leading to the activation of the transcription factor NF-κB and the induction of an alternative STING-dependent gene expression program. We propose that STING acts as a signaling hub that coordinates a transcriptional response depending on its mode of activation.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Cell Nucleus/genetics , DNA Damage/genetics , Membrane Proteins/genetics , NF-kappa B/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Signal Transduction/genetics , Cell Line , Cytosol/metabolism , DNA/genetics , HEK293 Cells , Humans , Immunity, Innate/genetics , Keratinocytes/physiology , Poly (ADP-Ribose) Polymerase-1/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics
14.
J Gen Virol ; 99(9): 1274-1285, 2018 09.
Article in English | MEDLINE | ID: mdl-30045780

ABSTRACT

The relationship between human cytomegalovirus (HCMV) and tumours has been extensively investigated, mainly in glioblastoma multiforme (GBM), a malignant tumour of the central nervous system with low overall survival rates. Several reports have demonstrated the presence of HCMV in GBM, although typically restricted to a low number of cells, and studies have indicated that viral proteins have the ability to dysregulate cellular processes and increase tumour malignancy. Treatment of GBM involves the use of the chemotherapeutic agents temozolomide (TMZ) and carmustine (bis-chloroethylnitrosourea, BCNU), which lead to the attachment of adducts to the DNA backbone, causing errors during replication and consequent cell death. It is known that HCMV infection can modulate DNA repair pathways, but what effects the virus may exhibit during chemotherapy are unknown. Here we approach this question by analysing HCMV infection and viral protein accumulation in GBM cell lines with different genotypes and their response to TMZ and BCNU in the presence of the virus. We demonstrate that A172, TP365MG and U251MG GBM cells are efficiently infected by both low-passage (TB40E) and high-passage (AD169) HCMV strains. However, the GBM cell lines vary widely in their permissiveness to viral gene expression and exhibit very different patterns of immediate early, early and late protein accumulation. HCMV reduces the viability of permissive GBM cells in a multiplicity-dependent manner in both the absence and presence of TMZ or BNCU. In sum, we demonstrate that GBM cell lines are equally susceptible but differentially permissive to infection by both low- and high-passage strains of HCMV. This observation not only indicates that viral replication is largely controlled by cellular factors in this system, but also provides a possible explanation for why viral gene products are only found in a subset of cells in GBM tumours. Furthermore, we conclude that the virus does not confer increased resistance to chemotherapeutic drugs in various GBM cell lines, but instead reduces tumour cell viability. These results highlight that the oncomodulatory potential of HCMV is not limited to cancer-promoting activities, but also includes adverse effects on tumour cell proliferation or survival.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Cytomegalovirus , Glioblastoma/drug therapy , Antineoplastic Agents/administration & dosage , Carmustine/administration & dosage , Carmustine/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Viral , Glioblastoma/virology , Humans , Temozolomide/administration & dosage , Temozolomide/pharmacology , Viral Proteins/genetics , Viral Proteins/metabolism
15.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29950413

ABSTRACT

The mechanisms underlying neurodevelopmental damage caused by virus infections remain poorly defined. Congenital human cytomegalovirus (HCMV) infection is the leading cause of fetal brain development disorders. Previous work has linked HCMV infection to perturbations of neural cell fate, including premature differentiation of neural progenitor cells (NPCs). Here, we show that HCMV infection of NPCs results in loss of the SOX2 protein, a key pluripotency-associated transcription factor. SOX2 depletion maps to the HCMV major immediate early (IE) transcription unit and is individually mediated by the IE1 and IE2 proteins. IE1 causes SOX2 downregulation by promoting the nuclear accumulation and inhibiting the phosphorylation of STAT3, a transcriptional activator of SOX2 expression. Deranged signaling resulting in depletion of a critical stem cell protein is an unanticipated mechanism by which the viral major IE proteins may contribute to brain development disorders caused by congenital HCMV infection.IMPORTANCE Human cytomegalovirus (HCMV) infections are a leading cause of brain damage, hearing loss, and other neurological disabilities in children. We report that the HCMV proteins known as IE1 and IE2 target expression of human SOX2, a central pluripotency-associated transcription factor that governs neural progenitor cell (NPC) fate and is required for normal brain development. Both during HCMV infection and when expressed alone, IE1 causes the loss of SOX2 from NPCs. IE1 mediates SOX2 depletion by targeting STAT3, a critical upstream regulator of SOX2 expression. Our findings reveal an unanticipated mechanism by which a common virus may cause damage to the developing nervous system and suggest novel targets for medical intervention.


Subject(s)
Cytomegalovirus/growth & development , Host-Pathogen Interactions , Immediate-Early Proteins/metabolism , Neural Stem Cells/pathology , Neural Stem Cells/virology , SOXB1 Transcription Factors/metabolism , STAT3 Transcription Factor/metabolism , Cells, Cultured , Humans
16.
Antiviral Res ; 150: 79-92, 2018 02.
Article in English | MEDLINE | ID: mdl-29037975

ABSTRACT

Viral interferon (IFN) antagonists are a diverse class of viral proteins that counteract the host IFN response, which is important for controlling viral infections. Viral IFN antagonists are often multifunctional proteins that perform vital roles in virus replication beyond IFN antagonism. The critical importance of viral IFN antagonists is highlighted by the fact that almost all viruses encode one of these proteins. Inhibition of viral IFN antagonists has the potential to exert pleiotropic antiviral effects and thus this important protein class represents a diverse plethora of novel therapeutic targets. To exploit this, we have successfully developed and executed a novel modular cell-based platform that facilitates the safe and rapid screening for inhibitors of a viral IFN antagonist of choice. The platform is based on two reporter cell-lines that provide a simple method to detect activation of IFN induction or signaling via an eGFP gene placed under the control of the IFNß or an ISRE-containing promoter, respectively. Expression of a target IFN antagonist in the appropriate reporter cell-line will block the IFN response and hence eGFP expression. We hypothesized that addition of a compound that inhibits IFN antagonist function will release the block imposed on the IFN response and hence restore eGFP expression, providing a measurable parameter for high throughput screening (HTS). We demonstrate assay proof-of-concept by (i) exploiting hepatitis C virus (HCV) protease inhibitors to inhibit NS3-4A's capacity to block IFN induction and (ii) successfully executing two HTS targeting viral IFN antagonists that block IFN signaling; NS2 and IE1 from human respiratory syncytial virus (RSV) and cytomegalovirus (CMV) respectively, two clinically important viruses for which vaccine development has thus far been unsuccessful and new antivirals are required. Both screens performed robustly and Z' Factor scores of >0.6 were achieved. We identified (i) four hit compounds that specifically inhibit RSV NS2's ability to block IFN signaling by mediating STAT2 degradation and exhibit modest antiviral activity and (ii) two hit compounds that interfere with IE1 transcription and significantly impair CMV replication. Overall, we demonstrate assay proof-of-concept as we target viral IFN antagonists from unrelated viruses and demonstrate its suitability for HTS.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Interferons/antagonists & inhibitors , Interferons/pharmacology , Viral Proteins/metabolism , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Gene Expression Regulation/drug effects , Gene Expression Regulation, Viral/drug effects , Genes, Reporter , Humans , Protein Binding , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/physiology , Signal Transduction , Virus Replication/drug effects
17.
PLoS Pathog ; 13(7): e1006542, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28750047

ABSTRACT

Congenital human cytomegalovirus (HCMV) infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs). As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1) is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1) is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.


Subject(s)
Cytomegalovirus Infections/enzymology , Cytomegalovirus Infections/virology , Cytomegalovirus/metabolism , Neural Stem Cells/metabolism , Transcription Factor HES-1/genetics , Ubiquitin-Protein Ligases/metabolism , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Down-Regulation , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Neural Stem Cells/enzymology , Neural Stem Cells/virology , Protein Binding , Proteolysis , Transcription Factor HES-1/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
19.
J Virol ; 90(20): 9543-55, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27512077

ABSTRACT

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle-viral latency and the productive lytic cycle-and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of immunocompromised individuals, including Kaposi's sarcoma (KS). Herpesviruses are able to establish a latent infection, in which they escape immune detection by restricting viral gene expression. Importantly, however, reactivation of productive viral replication (the lytic cycle) is necessary for the pathogenesis of KS. Therefore, it is important that we comprehensively understand the mechanisms that govern lytic reactivation, to better understand disease progression. In this study, we have identified a novel cellular protein (AT-rich interacting domain protein 3B [ARID3B]) that we show is able to temper lytic reactivation. We showed that the master lytic switch protein, RTA, enhanced ARID3B levels, which then interacted with viral DNA in a lytic cycle-dependent manner. Therefore, we have added a new factor to the list of cellular proteins that regulate the KSHV lytic cycle, which has implications for our understanding of KSHV biology.


Subject(s)
DNA-Binding Proteins/genetics , Herpesvirus 8, Human/genetics , Sarcoma, Kaposi/virology , Viral Proteins/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation/methods , DNA Replication/genetics , DNA, Viral/genetics , Gene Expression Regulation, Viral/genetics , Humans , Immediate-Early Proteins/genetics , Lymphoma, Primary Effusion/genetics , Lymphoma, Primary Effusion/virology , RNA, Small Interfering/genetics , Trans-Activators/genetics , Virus Activation/genetics , Virus Latency/genetics , Virus Replication/genetics
20.
PLoS Pathog ; 12(7): e1005748, 2016 07.
Article in English | MEDLINE | ID: mdl-27387064

ABSTRACT

The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.


Subject(s)
Cytomegalovirus Infections/metabolism , Gene Expression Regulation/physiology , Immediate-Early Proteins/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Cell Line , Cytomegalovirus/immunology , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/immunology , Fibroblasts/virology , Humans , Immunoblotting , Immunoprecipitation , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-6/biosynthesis , Interleukin-6/immunology , Mutagenesis, Site-Directed , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL