Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Clin Microbiol Antimicrob ; 12: 16, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23866018

ABSTRACT

BACKGROUND: Klebsiella pneumoniae outbreaks possessing extended-spectrum ß-lactamase- (ESBL) mediated resistance to third-generation cephalosporins have increased significantly in hospital and community settings worldwide. The study objective was to characterize prevalent genetic determinants of TEM, SHV and CTX-M types ESBL activity in K. pneumoniae isolates from Egypt. METHODS: Sixty five ESBL-producing K. pneumoniae strains, isolated from nosocomial and community-acquired infections from 10 Egyptian University hospitals (2000-2003), were confirmed with double disc-synergy method and E-test. blaTEM, blaSHV and blaCTX-m genes were identified by PCR and DNA sequencing. Pulsed-field gel electrophoresis (PFGE) was conducted for genotyping. RESULTS: All isolates displayed ceftazidime and cefotaxime resistance. blaTEM and blaSHV genes were detected in 98% of the isolates' genomes, while 11% carried blaCTX-m. DNA sequencing revealed plasmid-borne SHV-12,-5,-2a (17%), CTX-m-15 (11%), and TEM-1 (10%) prevalence. Among SHV-12 (n=8), one isolate displayed 100% blaSHV-12 amino acid identity, while others had various point mutations: T17G (Leu to Arg, position 6 of the enzyme: n=2); A8T and A10G (Tyr and Ile to Phe and Val, positions 3 and 4, respectively: n=4), and; A703G (Lys to Glu 235: n=1). SHV-5 and SHV-2a variants were identified in three isolates: T17G (n=1); A703G and G705A (Ser and Lys to Gly and Glu: n=1); multiple mutations at A8T, A10G, T17G, A703G and G705A (n=1). Remarkably, 57% of community-acquired isolates carried CTX-m-15. PFGE demonstrated four distinct genetic clusters, grouping strains of different genetic backgrounds. CONCLUSIONS: This is the first study demonstrating the occurrence of SHV-12, SHV-5 and SHV-2a variants in Egypt, indicating the spread of class A ESBL in K. pneumoniae through different mechanisms.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/isolation & purification , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Base Sequence , Community-Acquired Infections/microbiology , Cross Infection/microbiology , DNA, Bacterial/analysis , Egypt/epidemiology , Genetic Variation , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL