Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(30): 36831-36838, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477567

ABSTRACT

N-Heterocyclic carbene (NHC)-modified planar gold surfaces (NHC@Au) were found to be more susceptible toward wet chemical etching than undecorated surface areas. Site-selective decoration of NHCs on Au was achieved by microcontact printing (µCP) of the NHC precursors 1,3-bis(diisopropylphenyl)imidazol-3-ium hydrogen carbonate (IPr(H)[HCO3]) or 1,3-dimethylbenzimidazol-3-ium hydrogen carbonate (BIMe(H)[HCO3]). Strikingly, BIMe@Au showed concentration-dependent etching behavior, tunable from a positive resist to a negative resist. Surface patterning was verified by time-of-flight secondary-ion mass spectrometry and Kelvin probe force microscopy. Moreover, orthogonal µCP enabled the patterned functionalization of planar Au with both IPr and 1-eicosanethiol and the subsequent formation of three-dimensional structures with a single etching step. The selective removal of Au by functionalization with a surface ligand is unprecedented and enables novel applications of NHCs in materials chemistry and nanofabrication.

2.
Anal Chem ; 94(6): 2835-2843, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35107995

ABSTRACT

Improving signal-to-noise and, thereby, image contrast is one of the key challenges needed to expand the useful applications of mass spectrometry imaging (MSI). Both instrumental and data analysis approaches are of importance. Univariate denoising techniques have been used to improve contrast in MSI images with varying levels of success. Additionally, various multivariate analysis (MVA) methods have proven to be effective for improving image contrast. However, the distribution of important but low intensity ions can be obscured in the MVA analysis, leading to a loss of chemically specific information. In this work we propose inverse maximum signal factors (MSF) denoising as an alternative approach to both denoising and multivariate analysis for MSI imaging. This approach differs from the standard MVA techniques in that the output is denoised images for each original mass peak rather than the frequently difficult to interpret scores and loadings. Five tests have been developed to optimize and validate the resulting denoised images. The algorithm has been tested on a range of simulated data with different levels of noise, correlated noise, varying numbers of underlying components, and nonlinear effects. In the simulations, an excellent correlation between the true images and the denoised images was observed for peaks with an original signal-to-noise ratio as low as 0.1, as long as there was sufficient intensity in the sum of the selected peaks. The power of the approach was then demonstrated on two time-of-flight secondary ion mass spectrometry (ToF-SIMS) images that contained largely uncorrelated noise and a laser post-ionization matrix-assisted laser desorption/ionization mass spectrometry (MALDI-2-MS) image that contained strongly correlated noise. The improvements in signal-to-noise increased with decreasing intensity of the original peaks. A signal-to-noise improvement of as much as two orders of magnitude was achieved for very low intensity peaks. MSF denoising is a powerful addition to the suite of image processing techniques available for studying mass spectrometry images.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Secondary Ion/methods
3.
Angew Chem Int Ed Engl ; 59(32): 13651-13656, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32271973

ABSTRACT

A novel photoresponsive and fully conjugated N-heterocyclic carbene (NHC) has been synthesized that combines the excellent photophysical properties of arylazopyrazoles (AAPs) with an NHC that acts as a robust surface anchor (AAP-BIMe). The formation of self-assembled monolayers (SAMs) on gold was proven by ToF-SIMS and XPS, and the organic film displayed a very high stability at elevated temperatures. This stability was also reflected in a high desorption energy, which was determined by temperature-programmed SIMS measurements. E-/Z-AAP-BIMe@Au photoisomerization resulted in reversible alterations of the surface energy (i.e. wettability), the surface potential (i.e. work function), and the conductance (i.e. resistance). The effects could be explained by the difference in the dipole moment of the isomers. Furthermore, sequential application of a dummy ligand by microcontact printing and subsequent backfilling with AAP-BIMe allowed its patterning on gold. To the best of our knowledge, this is the first example of a photoswitchable NHC on a gold surface. These properties of AAP-BIMe@Au illustrate its suitability as a molecular switch for electronic devices.

4.
Angew Chem Int Ed Engl ; 57(35): 11465-11469, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-29952056

ABSTRACT

Patterned monolayers of N-heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC-CO2 adducts and NHC(H)[HCO3 ] salts. The NHC-modified areas showed an increased conductivity compared to unmodified gold surface areas. Furthermore, the remaining surface areas could be modified with a second, azide-functionalized carbene, facilitating further applications and post-printing modifications. Thorough elucidation by a variety of analytical methods offers comprehensive evidence for the viability of the methodology reported here. The protocol enables facile access to versatile, microstructured NHC-modified gold surfaces with highly stable patterns, enhanced conductivity, and the option for further modification.

5.
J Org Chem ; 82(18): 9418-9424, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28836782

ABSTRACT

Energetically favorable cation-π interactions play important roles in numerous molecular recognition processes in chemistry and biology. Herein, we present synergistic experimental and computational physical-organic chemistry studies on 2,6-diarylanilines that contain flanking meta/para-substituted aromatic rings adjacent to the central anilinium ion. A combination of measurements of pKa values, structural analyses of 2,6-diarylanilinium cations, and quantum chemical analyses based on the quantitative molecular orbital theory and a canonical energy decomposition analysis (EDA) scheme reveal that through-space cation-π interactions essentially contribute to observed trends in proton affinities and pKa values of 2,6-diarylanilines.

SELECTION OF CITATIONS
SEARCH DETAIL
...