Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961538

ABSTRACT

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Subject(s)
Bystander Effect , Dependovirus , Extracellular Vesicles , Genetic Therapy , RNA, Messenger , Humans , Genetic Therapy/methods , Dependovirus/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Extracellular Vesicles/metabolism , Mucopolysaccharidosis III/therapy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/genetics , Genetic Vectors , Acetyltransferases/metabolism , Acetyltransferases/genetics
2.
Sci Total Environ ; 931: 172939, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701928

ABSTRACT

Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.


Subject(s)
Diet , Euphausiacea , Humpback Whale , Animals , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Antarctic Regions , Fatty Acids/analysis , Climate Change
3.
Clin Cancer Res ; 29(11): 2052-2065, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36928921

ABSTRACT

PURPOSE: On the basis of preclinical evidence of epigenetic contribution to sensitivity and resistance to immune checkpoint inhibitors (ICI), we hypothesized that guadecitabine (hypomethylating agent) and atezolizumab [anti-programmed cell death ligand 1 (PD-L1)] together would potentiate a clinical response in patients with metastatic urothelial carcinoma (UC) unresponsive to initial immune checkpoint blockade therapy. PATIENTS AND METHODS: We designed a single arm phase II study (NCT03179943) with a safety run-in to identify the recommended phase II dose of the combination therapy of guadecitabine and atezolizumab. Patients with recurrent/advanced UC who had previously progressed on ICI therapy with programmed cell death protein 1 or PD-L1 targeting agents were eligible. Preplanned correlative analysis was performed to characterize peripheral immune dynamics and global DNA methylation, transcriptome, and immune infiltration dynamics of patient tumors. RESULTS: Safety run-in enrolled 6 patients and phase II enrolled 15 patients before the trial was closed for futility. No dose-limiting toxicity was observed. Four patients, with best response of stable disease (SD), exhibited extended tumor control (8-11 months) and survival (>14 months). Correlative analysis revealed lack of DNA demethylation in tumors after 2 cycles of treatment. Increased peripheral immune activation and immune infiltration in tumors after treatment correlated with progression-free survival and SD. Furthermore, high IL6 and IL8 levels in the patients' plasma was associated with short survival. CONCLUSIONS: No RECIST responses were observed after combination therapy in this trial. Although we could not detect the anticipated tumor-intrinsic effects of guadecitabine, the addition of hypomethylating agent to ICI therapy induced immune activation in a few patients, which associated with longer patient survival.


Subject(s)
Antineoplastic Agents , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/secondary , B7-H1 Antigen , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Neoplasm Recurrence, Local/drug therapy
4.
Ecology ; 104(1): e3888, 2023 01.
Article in English | MEDLINE | ID: mdl-36208280

ABSTRACT

Lipid and fatty acid datasets are commonly used to assess the nutritional composition of organisms, trophic ecology, and ecosystem dynamics. Lipids and their fatty acid constituents are essential nutrients to all forms of life because they contribute to biological processes such as energy flow and metabolism. Assessment of total lipids in tissues of organisms provides information on energy allocation and life-history strategies and can be an indicator of nutritional condition. The analysis of an organism's fatty acids is a widely used technique for assessing nutrient and energy transfer, and dietary interactions in food webs. Although there have been many published regional studies that assessed lipid and fatty acid compositions, many only report the mean values of the most abundant fatty acids. There are limited individual records available for wider use in intercomparison or macro-scale studies. This dataset consists of 4856 records of individual and pooled samples of at least 470 different marine consumer species sampled from tropical, temperate, and polar regions around Australia and in the Southern, Indian, and Pacific Oceans from 1989 to 2018. This includes data for a diverse range of taxa (zooplankton, fish, cephalopods, chondrichthyans, and marine mammals), size ranges (0.02 cm to ~13 m), and that cover a broad range of trophic positions (2.0-4.6). When known, we provide a record of species name, date of sampling, sampling location, body size, relative (%) measurements of tissue-specific total lipid content and abundant fatty acids, and absolute content (mg 100 g-1 tissue) of eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic acid (DHA, 22:6n3) as important long-chain (≥C20 ) polyunsaturated omega-3 fatty acids. These records form a solid basis for comparative studies that will facilitate a broad understanding of the spatial and temporal distribution of marine lipids globally. The dataset also provides reference data for future dietary assessments of marine predators and model assessments of potential impacts of climate change on the availability of marine lipids and fatty acids. There are 480 data records within our data file for which the providers have requested that permission for reuse be granted, with the likely condition that they are included as a coauthor on the reporting of the dataset. Records with this condition are indicated by a "yes" under "Conditions_of_data_use" in Data S1: Marineconsumer_FAdata.csv (see Table 2 in Metadata S1 for more details). For all other data records marked as "No" under "Conditions_of_data_use," there are no copyright restrictions for research and/or teaching purposes. We request that users acknowledge use of the data in publications, research proposals, websites, and other outlets via formal citation of this work and original data sources as applicable.


Subject(s)
Ecosystem , Fatty Acids , Animals , Fatty Acids/analysis , Fatty Acids/metabolism , Food Chain , Fishes , Zooplankton , Mammals
5.
J Comp Physiol B ; 192(6): 789-804, 2022 11.
Article in English | MEDLINE | ID: mdl-35939091

ABSTRACT

We examined the differential deposition of lipids according to layer, sex and ontogeny in the blubber of 31 adult sperm whales (n = 22 females, 9 males) and two calves that stranded off the Tasmanian coast from 2002 to 2004. Total lipid (TL) content varied widely across the blubber layers of adults (27-77%). Overall, females had higher TL content than males possibly representing higher energy needs due to reproduction. Higher TL content in the middle layer of adults (69%) suggests this layer may act as an energy reserve. Wax esters (WE) dominated the blubber and were highest in the outer layer of adults and calves, likely providing insulative qualities for this deep-diving odontocete. Triacyclglycerols, an easily mobilized energy source, were highest in the inner layer of females (37.3 ± 13.5%) and calves (32.1 ± 1.8%) compared to males (17.1 ± 8.2%). Monounsaturated fatty acids (MUFA) also dominated the blubber. An increasing gradient from the inner to outer layer reflected an increasing source of endogenously synthesized lipids, whereas an increasing gradient of saturated fatty acids and polyunsaturated fatty acids (PUFA) toward the inner layer reflected an increasing source of dietary lipids. Although body site did not affect lipid profiles, stratification between the outer and more metabolically active inner layers suggests that only using the outer layer may result in an incomplete lipid profile for sperm whales.


Subject(s)
Fatty Acids , Sperm Whale , Adipose Tissue , Animals , Fatty Acids, Monounsaturated , Fatty Acids, Unsaturated , Female , Male
6.
Mar Drugs ; 19(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34356807

ABSTRACT

The Labyrinthulomycetes or Labyrinthulea are a class of protists that produce a network of filaments that enable the cells to glide along and absorb nutrients. One of the main two Labyrinthulea groups is the thraustochytrids, which are becoming an increasingly recognised and commercially used alternate source of long-chain (LC, ≥C20) omega-3 containing oils. This study demonstrates, to our knowledge for the first time, the regiospecificity of the triacylglycerol (TAG) fraction derived from Australian thraustochytrid Aurantiochytrium sp. strain TC 20 obtained using 13C nuclear magnetic resonance spectroscopy (13C NMR) analysis. The DHA present in the TC 20 TAG fraction was determined to be concentrated in the sn-2 position, with TAG (16:0/22:6/16:0) identified as the main species present. The sn-2 preference is similar to that found in salmon and tuna oil, and differs to seal oil containing largely sn-1,3 LC-PUFA. A higher concentration of sn-2 DHA occurred in the thraustochytrid TC 20 oil compared to that of tuna oil.


Subject(s)
Dietary Fats , Docosahexaenoic Acids/chemistry , Stramenopiles , Triglycerides/chemistry , Animals , Aquatic Organisms , Australia , Magnetic Resonance Imaging
7.
Sci Rep ; 10(1): 18274, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106590

ABSTRACT

Southern hemisphere humpback whales are classified as high-fidelity Antarctic krill consumers and as such are vulnerable to variability and long-term changes in krill biomass. Evidence of heterogeneous feeding patterns of east coast of Australia migrating humpback whales has been observed, warranting a comprehensive assessment of interannual variability in their diet. We examined the lipid and fatty acid profiles of individuals of the east coast of Australia migrating stock sampled between 2008 and 2018. The use of live-sampled blubber biopsies showed that fatty acid profiles varied significantly among all years. The two trophic indicator fatty acids for Antarctic krill, 20:5ω3 and 22:6ω3 remained largely unchanged across the 10-year period, suggesting that Antarctic krill is the principal prey item. A distance-based linear model showed that 33% of the total variation in fatty acid profiles was explained by environmental variables and climate indices. Most of the variation was explained by the Southern Annular Mode (23.7%). The high degree of variability observed in this study was unexpected for a species that is thought to feed primarily on one prey item. We propose that the observed variability likely arises from changes in the diet of Antarctic krill rather than changes in the whale's diet.


Subject(s)
Euphausiacea/chemistry , Fatty Acids/analysis , Humpback Whale/physiology , Animal Migration , Animals , Australia , Carnivory , Climate , Female , Humpback Whale/metabolism , Lipid Metabolism , Male
8.
Front Plant Sci ; 11: 727, 2020.
Article in English | MEDLINE | ID: mdl-32595662

ABSTRACT

Plant seeds have long been promoted as a production platform for novel fatty acids such as the ω3 long-chain (≥ C20) polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) commonly found in fish oil. In this article we describe the creation of a canola (Brassica napus) variety producing fish oil-like levels of DHA in the seed. This was achieved by the introduction of a microalgal/yeast transgenic pathway of seven consecutive enzymatic steps which converted the native substrate oleic acid to α-linolenic acid and, subsequently, to EPA, docosapentaenoic acid (DPA) and DHA. This paper describes construct design and evaluation, plant transformation, event selection, field testing in a wide range of environments, and oil profile stability of the transgenic seed. The stable, high-performing event NS-B50027-4 produced fish oil-like levels of DHA (9-11%) in open field trials of T3 to T7 generation plants in several locations in Australia and Canada. This study also describes the highest seed DHA levels reported thus far and is one of the first examples of a deregulated genetically modified crop with clear health benefits to the consumer.

9.
Sci Rep ; 10(1): 6060, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32269236

ABSTRACT

Antarctic krill (Euphausia superba) are a key component of the Antarctic food web with considerable lipid reserves that are vital for their health and higher predator survival. Krill lipids are primarily derived from their diet of plankton, in particular diatoms and flagellates. Few attempts have been made to link the spatial and temporal variations in krill lipids to those in their food supply. Remotely-sensed environmental parameters provide large-scale information on the potential availability of krill food, although relating this to physiological and biochemical differences has only been performed on small scales and with limited samples. Our study utilised remotely-sensed data (chlorophyll a and sea surface temperature) coupled with krill lipid data obtained from 3 years of fishery-derived samples. We examined within and between year variation of trends in both the environment and krill biochemistry data. Chlorophyll a levels were positively related to krill lipid levels, particularly triacylglycerol. Plankton fatty acid biomarkers analysed in krill (such as n-3 polyunsaturated fatty acids) increased with decreasing sea surface temperature and increasing chlorophyll a levels. Our study demonstrates the utility of combining remote-sensing and biochemical data in examining biological and physiological relationships between Antarctic krill and the Southern Ocean environment.


Subject(s)
Euphausiacea/metabolism , Fatty Acids/metabolism , Animals , Antarctic Regions , Australia , Chlorophyll/metabolism , Lipid Metabolism , Oceans and Seas , Satellite Communications , Seasons , Temperature , Triglycerides/metabolism
10.
Glob Chang Biol ; 26(6): 3512-3524, 2020 06.
Article in English | MEDLINE | ID: mdl-32105368

ABSTRACT

Marine heatwaves are extreme events that can have profound and lasting impacts on marine species. Field observations have shown seaweeds to be highly susceptible to marine heatwaves, but the physiological drivers of this susceptibility are poorly understood. Furthermore, the effects of marine heatwaves in conjunction with ocean warming and acidification are yet to be investigated. To address this knowledge gap, we conducted a laboratory culture experiment in which we tested the growth and physiological responses of Phyllospora comosa juveniles from the southern extent of its range (43-31°S) to marine heatwaves, ocean warming and acidification. We used a 'collapsed factorial design' in which marine heatwaves were superimposed on current (today's pH and temperature) and future (pH and temperature projected by 2100) ocean conditions. Responses were tested both during the heatwaves, and after a 7-day recovery period. Heatwaves reduced net photosynthetic rates in both current and future conditions, while respiration rates were elevated under heatwaves in the current conditions only. Following the recovery period, there was little evidence of heatwaves having lasting negative effects on growth, photosynthesis or respiration. Exposure to heatwaves, future ocean conditions or both caused an increase in the degree of saturation of fatty acids. This adjustment may have counteracted negative effects of elevated temperatures by decreasing membrane fluidity, which increases at higher temperatures. Furthermore, P. comosa appeared to down-regulate the energetically expensive carbon dioxide concentrating mechanism in the future conditions with a reduction in δ13 C values detected in these treatments. Any saved energy arising from this down-regulation was not invested in growth and was likely invested in the adjustment of fatty acid composition. This adjustment is a mechanism by which P. comosa and other seaweeds may tolerate the negative effects of ocean warming and marine heatwaves through benefits arising from ocean acidification.


Subject(s)
Seaweed , Ecosystem , Fatty Acids , Hydrogen-Ion Concentration , Oceans and Seas , Seawater , Temperature
11.
Br J Nutr ; 122(12): 1329-1345, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31506120

ABSTRACT

Limited availability of fish oils (FO), rich in n-3 long-chain (≥C20) PUFA, is a major constraint for further growth of the aquaculture industry. Long-chain n-3 rich oils from crops GM with algal genes are promising new sources for the industry. This project studied the use of a newly developed n-3 canola oil (DHA-CA) in diets of Atlantic salmon fingerlings in freshwater. The DHA-CA oil has high proportions of the n-3 fatty acids (FA) 18 : 3n-3 and DHA and lower proportions of n-6 FA than conventional plant oils. Levels of phytosterols, vitamin E and minerals in the DHA-CA were within the natural variation of commercial canola oils. Pesticides, mycotoxins, polyaromatic hydrocarbons and heavy metals were below lowest qualifiable concentration. Two feeding trials were conducted to evaluate effects of two dietary levels of DHA-CA compared with two dietary levels of FO at two water temperatures. Fish increased their weight approximately 20-fold at 16°C and 12-fold at 12°C during the experimental periods, with equal growth in salmon fed the FO diets compared with DHA-CA diets. Salmon fed DHA-CA diets had approximately the same EPA+DHA content in whole body as salmon fed FO diets. Gene expression, lipid composition and oxidative stress-related enzyme activities showed only minor differences between the dietary groups, and the effects were mostly a result of dietary oil level, rather than the oil source. The results demonstrated that DHA-CA is a safe and effective replacement for FO in diets of Atlantic salmon during the sensitive fingerling life-stage.


Subject(s)
Animal Feed , Docosahexaenoic Acids/administration & dosage , Fish Oils/administration & dosage , Rapeseed Oil/administration & dosage , Salmo salar , Animals , Australia , Cholesterol/chemistry , Gene Expression Profiling , Intestines , Lipid Metabolism , Metabolomics , Norway , Oxidative Stress , Phytosterols/chemistry , Plants, Genetically Modified/chemistry , Seeds/chemistry , Temperature , Vitamin E/chemistry , Vitamin K/chemistry
12.
Sci Rep ; 9(1): 12375, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451724

ABSTRACT

Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 µatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 µatm) and an extreme pCO2 level (4000 µatm). Total lipid mass (mg g-1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 µatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.


Subject(s)
Acids/chemistry , Euphausiacea/metabolism , Fatty Acids/analysis , Oceans and Seas , Adaptation, Physiological , Animals , Carbon Dioxide/analysis , Euphausiacea/immunology , Phospholipids/analysis , Principal Component Analysis , Sterols/analysis
13.
Nutrients ; 11(4)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934976

ABSTRACT

Omega-3 polyunsaturated fatty acids (n-3 PUFA) are termed essential fatty acids because they cannot be synthesized de novo by humans due to the lack of delta-12 and delta-15 desaturase enzymes and must therefore be acquired from the diet. n-3 PUFA include α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic (EPA, 20:5n-3), docosahexaenoic (DHA, 22:6n-3), and the less recognized docosapentaenoic acid (DPA, 22:5n-3). The three long-chain (≥C20) n-3 PUFA (n-3 LC-PUFA), EPA, DHA, and DPA play an important role in human health by reducing the risk of chronic diseases. Up to the present time, seafood, and in particular, fish oil-derived products, have been the richest sources of n-3 LC-PUFA. The human diet generally contains insufficient amounts of these essential FA due largely to the low consumption of seafood. This issue provides opportunities to enrich the content of n-3 PUFA in other common food groups. Milk and milk products have traditionally been a major component of human diets, but are also among some of the poorest sources of n-3 PUFA. Consideration of the high consumption of milk and its processed products worldwide and the human health benefits has led to a large number of studies targeting the enhancement of n-3 PUFA content in dairy products. The main objective of this review was to evaluate the major strategies that have been employed to enhance n-3 PUFA content in dairy products and to unravel potential knowledge gaps for further research on this topic. Nutritional manipulation to date has been the main approach for altering milk fatty acids (FA) in ruminants. However, the main challenge is ruminal biohydrogenation in which dietary PUFA are hydrogenated into monounsaturated FA and/or ultimately, saturated FA, due to rumen microbial activities. The inclusion of oil seed and vegetable oil in dairy animal diets significantly elevates ALA content, while the addition of rumen-protected marine-derived supplements is the most effective way to increase the concentration of EPA, DHA, and DPA in dairy products. In our view, the mechanisms of n-3 LC-PUFA biosynthesis pathway from ALA and the biohydrogenation of individual n-3 LC-PUFA in ruminants need to be better elucidated. Identified knowledge gaps regarding the activities of candidate genes regulating the concentrations of n-3 PUFA and the responses of ruminants to specific lipid supplementation regimes are also critical to a greater understanding of nutrition-genetics interactions driving lipid metabolism.


Subject(s)
Dairy Products/analysis , Fatty Acids, Omega-3/chemistry , Food Analysis , Animals , Food, Fortified , Humans , Lipid Metabolism
14.
Sci Rep ; 9(1): 1238, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718655

ABSTRACT

We investigated the effect of various dietary polyunsaturated fatty acid (PUFA) sources on the fatty acid profiles of muscle, liver, heart and kidney of Australian prime lambs. Seventy-two White Suffolk x Corriedale first-cross lambs weaned at 6 months of age were randomly allocated to the following six treatments: (1) Control: Lucerne hay only; wheat-based pellets infused with 50 ml/kg dry matter (DM) of oil from (2) rice bran (RBO); (3) canola (CO); (4) rumen-protected (RPO), (5) flaxseed (FSO) and (6) safflower (SO) sources in a completely randomized experimental design. Lambs in CO, FSO, SO and RPO treatments achieved contents of eicosapentaenoic acid (EPA, 22:5n-3) plus docosahexaenoic acid (DHA, 22:6n-3) in the longissimus dorsi muscle ranging from 31.1 to 57.1 mg/135 g, over and above the 30 mg per standard serve (135 g) threshold for "source" claim under the Australian guidelines. There was no difference in n-3 LC-PUFA contents in longissimus dorsi muscle of lambs fed dietary oils of plant origin. The highest 18:3n-3 (ALA) contents achieved with FSO diet in the muscle, liver and heart were 45.6, 128.1 and 51.3 mg/100 g, respectively. Liver and kidney contained high contents of n-3 LC-PUFA (ranging from 306.7 to 598.2 mg/100 g and 134.0 to 300.4 mg/100 g, respectively), with all values readily exceeding the 'good source' status (60 mg per serve under Australian guidelines). The liver and kidney of PUFA fed lambs can be labelled as 'good source' of n-3 LC-PUFA based on EPA and DHA contents stipulated by the Food Standards of Australia and New Zealand guidelines. Therefore, if lamb consumers consider eating the liver and kidney as their dietary protein sources, they can adequately obtain the associated health benefits of n-3 LC-PUFA.


Subject(s)
Animal Feed , Fatty Acids, Unsaturated/analysis , Red Meat/analysis , Animals , Australia , Fatty Acids, Unsaturated/administration & dosage , Kidney/chemistry , Liver/chemistry , Male , Myocardium/chemistry , Paraspinal Muscles/chemistry , Sheep
15.
Ecol Evol ; 9(1): 125-140, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30680101

ABSTRACT

Increased plant biomass is observed in terrestrial systems due to rising levels of atmospheric CO2, but responses of marine macroalgae to CO2 enrichment are unclear. The 200% increase in CO2 by 2100 is predicted to enhance the productivity of fleshy macroalgae that acquire inorganic carbon solely as CO2 (non-carbon dioxide-concentrating mechanism [CCM] species-i.e., species without a carbon dioxide-concentrating mechanism), whereas those that additionally uptake bicarbonate (CCM species) are predicted to respond neutrally or positively depending on their affinity for bicarbonate. Previous studies, however, show that fleshy macroalgae exhibit a broad variety of responses to CO2 enrichment and the underlying mechanisms are largely unknown. This physiological study compared the responses of a CCM species (Lomentaria australis) with a non-CCM species (Craspedocarpus ramentaceus) to CO2 enrichment with regards to growth, net photosynthesis, and biochemistry. Contrary to expectations, there was no enrichment effect for the non-CCM species, whereas the CCM species had a twofold greater growth rate, likely driven by a downregulation of the energetically costly CCM(s). This saved energy was invested into new growth rather than storage lipids and fatty acids. In addition, we conducted a comprehensive literature synthesis to examine the extent to which the growth and photosynthetic responses of fleshy macroalgae to elevated CO2 are related to their carbon acquisition strategies. Findings highlight that the responses of macroalgae to CO2 enrichment cannot be inferred solely from their carbon uptake strategy, and targeted physiological experiments on a wider range of species are needed to better predict responses of macroalgae to future oceanic change.

16.
PLoS One ; 14(1): e0208229, 2019.
Article in English | MEDLINE | ID: mdl-30605467

ABSTRACT

The correlations between growth and wool traits in response to canola and flaxseed oil supplementation were evaluated in Australian prime lambs. Sixty dual-purpose prime lambs including purebred Merino and crossbred lambs were allocated to one of five treatments of lucerne hay basal diet supplemented with isocaloric and isonitrogenous wheat-based pellets. Treatments were: no oil inclusion (Control); 2.5% canola oil; 5% canola oil; 2.5% flaxseed oil and 5% flaxseed oil, with lamb groups balanced by breed and gender. Each lamb was daily supplemented with 1kg of pellets and had free access to lucerne hay and water throughout the 7-week feeding trial, after a 3-week adaptation. Individual animal basal and supplementary pellet feed intakes were recorded daily, while body conformation traits, body condition scores and liveweights were measured on days 0, 21, 35 and 49. The lambs were dye-banded on the mid-side and shorn before commencing the feeding trial and mid-side wool samples were collected from the same dye-banded area of each lamb at the end of the experiment. Correlations between wool quality traits and lamb performance were non-significant (P>0.05). Oil supplementation had no detrimental effect on lamb growth and wool quality traits (P > 0.05). Gender significantly affected wither height gain and fibre diameter. There were significant interactions between oil supplementation and lamb breed on chest girth. The correlations between clean fleece yield (CFY) and other wool quality traits were moderate ranging from 0.29 to 0.55. Moderate to high correlations between fibre diameter (FD) and other wool quality traits were detected (0.46-0.99) with the strongest relationship between FD and wool spinning fineness (SF). The relationship between CFY and wool comfort factor (CF) were positive, while negative relationships between CFY and the others were observed. A combination of 5% oil supplementation and genetics is an effective and strategic management tool for enhancing feed efficiency and growth performance without negative effects on wool quality in dual-purpose lamb production. This is a good outcome for dual-purpose sheep farmers. It essentially means the absorbed nutrients in supplemented lambs yielded good growth performance without any detrimental impact on wool quality; a win-win case of nutrient partitioning into the synthesis of muscle and wool without compromising either traits.


Subject(s)
Dietary Supplements , Genetic Variation , Linseed Oil/pharmacology , Rapeseed Oil/pharmacology , Sheep/growth & development , Sheep/genetics , Wool/growth & development , Animals , Australia , Breeding , Female , Male , Wool/drug effects
17.
J Dairy Sci ; 102(1): 211-222, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30391173

ABSTRACT

This study investigated the effect of different plant oil-infused and rumen-protected wheat-based pellets containing eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) on n-3 long-chain (≥C20) polyunsaturated fatty acid (LC-PUFA) content, fatty acid recovery, and sensory attributes of ripened cheese from dairy sheep. During a 10-wk supplementary feeding trial, 60 dairy ewes balanced by live weight, milk yield, parity, and sire breed were randomly divided into 6 groups that were (1) supplemented with on-farm existing commercial wheat-based pellets without oil inclusion (control) or supplemented with wheat-based pellets infused with 50 mL/kg dry matter of oils from (2) canola, (3) rice bran, (4) flaxseed, (5) safflower, and (6) rumen-protected EPA + DHA. Milk samples from each treatment were collected separately by sire breed during the experimental period for cheese processing at the end of the experiment. Twelve batches of cheese (2 batches per treatment) were processed and ripened for 120 d. Three cheese samples were collected and analyzed for each cheese making session (total of 36 cheese samples) at d 120 of ripening. Processed cheese of rumen-protected EPA + DHA had the most efficiency at elevating total n-3 LC-PUFA [total EPA + DHA + docosapentaenoic acid (DPA, 22:5n-3] content compared with the control (0.49 vs. 0.28%). Flaxseed elicited the greatest enhancement of α-linolenic acid (ALA, 18:3n-3), whereas safflower was the most effective diet in enhancing the level of linoleic acid (18:2n-6) in cheese (1.29 vs. 0.71% and 4.8 vs. 3.3%, respectively). Parallel recoveries of n-3 and n-6 LC-PUFA were observed across all treatments except for α-linolenic acid and EPA. Cheese eating sensory traits were also highly affected by oil supplementation, with the highest score of 7.5 in cheese from the rice bran and flaxseed treatments. These results provide new insights into the biological mechanisms and processes that determine dairy ewe milk productivity by underpinning the vital biological role of n-3 LC-PUFA in not only enhancing the healthy composition of cheese from ewes but also translating it into consumer acceptability.


Subject(s)
Animal Feed/analysis , Cheese/analysis , Fatty Acids, Omega-3/analysis , Sheep/metabolism , Animals , Breeding , Dairying , Diet/veterinary , Docosahexaenoic Acids/analysis , Eicosapentaenoic Acid/analogs & derivatives , Fatty Acids, Unsaturated/analysis , Female , Linseed Oil/administration & dosage , Linseed Oil/chemistry , Milk/chemistry , Plant Oils/administration & dosage , Pregnancy , Rumen/metabolism , alpha-Linolenic Acid/analysis
18.
Animals (Basel) ; 8(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572585

ABSTRACT

The Australian dairy sheep industry is small and mostly based on a natural grass grazing system, which can limit productivity. The current study tested different plant oil-infused and rumen protected polyunsaturated fats and their interactions with sire breeds to improve lactation traits and body condition scores (BCS) of ewes grazing low quality pastures. It was hypothesised that supplementing lactating ewe's diets with plant-derived polyunsaturated oils would improve milk production and composition without compromising BCS. Sixty ewes (n = 10/treatment) in mid-lactation, balanced by sire breed, parity, milk yield, body condition score, and liveweight, were supplemented with: (1) control: wheat-based pellets without oil inclusion; wheat-based pellets including; (2) canola oil (CO); (3) rice bran oil (RBO); (4) flaxseed oil (FSO); (5); safflower oil (SFO); and (6) rumen protected marine oil containing eicosapentaenoic acid and docosahexaenoic acid (RPO). Except for the control group, all supplementary diets included the same level of 50 mL/kg DM of oil and all diets were isocaloric and isonitrogenous. Experimental animals were grazed in the same paddock with ad libitum access to pasture, hay, and water during the 10-week study. RPO was the most effective diet that enhanced milk, fat, and protein yields by approximately 30%, 13%, and 31%, respectively (p < 0.0001). A significant increase in milk production was also observed with CO, RBO, and SFO treatments (p < 0.0001). Breed significantly influenced animal performance with higher milk yields recorded for crossbred Awassi × East Friesian (AW × EF) (578 g/day) vs. purebred Awassi (452 g/day) (p < 0.0001). This study provides empirical evidence for the use of rumen-protected and plant-derived oil-infused pellets as supplements under low quality pasture grazing conditions to improve the production performance of purebred Awassi and crossbred AW × EF ewes.

19.
Nutrients ; 10(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558276

ABSTRACT

The enhancement of health-beneficial omega-3 long⁻chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) contents in the muscle, liver, heart, and kidney of Australian prime lambs through pasture grazing and supplementation with oil infused pellets was investigated. Forty-eight first-cross prime lambs were randomly assigned into a split-plot design with pasture type as the main plot effect and pellet supplementation as a sub-plot effect in a feeding trial that lasted for nine weeks. The n-3 LC-PUFA content in Longissimus dorsi muscle of all lambs was well above the 30 mg threshold for "omega-3 source" nutrition claim under the Australian Food Standards and Guidelines. Pasture type impacted the fatty acid contents in muscle, heart, and kidney of prime lambs. Lambs grazing cocksfoot grass only had high 18:3n-3 (ALA) and n-3 LC-PUFA contents (67.1 mg/100 g and 55.2 mg/100 g, respectively) in the Longissimus dorsi muscle, which was not significantly different (p > 0.8990) from the contents of lambs grazing only lucerne. Supplementation of pellets with or without oil infusion to grazing lambs generally decreased the ALA and n-3 LC-PUFA contents and increased the n-6/n-3 ratio in the Longissimus dorsi muscle. The fatty acid content in the internal organs of grazing lambs was also affected by pellet supplementation. The liver and kidney of grazing lambs were both "good sources" (60 mg/100 g) of omega-3. The cocksfoot grass showed considerable potential for producing healthy, premium quality meat with high contents of n-3 and n-3 LC-PUFA, which may consequently enhance the omega-3 intake of Australian lamb consumers.


Subject(s)
Animal Husbandry/methods , Dactylis , Diet/veterinary , Fatty Acids, Omega-3/metabolism , Meat/analysis , Medicago sativa , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Dietary Supplements , Heart , Kidney/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Plant Oils/administration & dosage , Plant Oils/metabolism , Random Allocation , Sheep , alpha-Linolenic Acid/metabolism
20.
Animals (Basel) ; 8(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563070

ABSTRACT

This study investigated live animal performance and carcass characteristics of Australian prime lambs fed oil based polyunsaturated fatty acid (PUFA) enriched pellets in a feedlot system. The tested hypothesis was that supplementation of lambs with a variety of dietary oil based PUFA enriched pellets would enhance growth and carcass characteristics compared with the control lambs fed only with lucerne hay. Seventy-two, 6 months old White Suffolk x Corriedale first-cross prime lambs with an average liveweight (LWT) of 35.7 ± 0.9 kg were allocated to six treatment groups in a completely randomised experimental design. The treatments were: (1) control: lucerne hay only; or lucerne hay plus wheat-based pellets infused with 50 mL/kg dry matter (DM) of oils from (2) rice bran (RBO); (3) canola (CO); (4) rumen protected (RPO); (5) flaxseed (FO) and (6) safflower (SO) dietary sources. All lambs had ad libitum access to lucerne hay and clean fresh water. Supplemented lambs were fed 1 kg of pellet/head/day for 10 weeks. Feed intake, final LWT, average daily gain (ADG), body conformation and carcass characteristics of lambs in the supplemented groups were all greater than for the control group. SO lambs had the lowest ADG of 190.3 g/day. RBO and CO treatments had the lowest feed cost per unit gain of AU$3.0/kg. Supplemented lambs had similar over the hooks (OTH) incomes that were all higher than that of the control group. This empirical evidence-based data demonstrated that supplementation of lambs with RBO and CO had comparatively lower feed costs without compromising ADG, carcass characteristics and OTH income.

SELECTION OF CITATIONS
SEARCH DETAIL
...