Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Ethnopharmacol ; 334: 118513, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38969151

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: 2,3,5,4'-tetrahydroxy-stilbene-2-O-ß-D-glucoside (TSG) is the principal bioactive compound contained in Polygonum multiflorum Thunb. (PMT), which is traditionally recorded to possess tonic and anti-aging efficacy. AIM OF THE STUDY: To identify the TSG-provided promotion on liver regeneration (LR) following partial hepatectomy (PHx) in mice and to explicate its involved mechanism. MATERIALS AND METHODS: The promotion of TSG on LR was evaluated by hematoxylin and eosin (H&E), 5-bromodeoxyuridinc (BrdU) and Ki-67 staining, and measuring the level of proliferating cell nuclear antigen (PCNA) and Cyclin D1 in mice with PHx at different time points. Gene Expression Omnibus (GEO, GSE15239) database and the label-free quantitative proteomics from liver of mice at 24 h after PHx were integrated to identify potential involved critical proteins, which were verified by Western-blot, Real-time polymerase chain reaction (RT-PCR), molecular docking and luciferase activity assay. Primary hepatocytes isolated from mice were used to investigate the TSG-provided promotion on proliferation in vitro. RESULTS: TSG (20 mg/kg) promoted LR in mice after PHx. Results from RNA expression data from clinical samples and proteomic analysis from liver tissues indicated that peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid metabolism pathway were crucially associated with the TSG-provided promotion on LR. TSG enhanced the nuclear translocation of PPARα and the mRNA expression of a series of PPARα-regulated downstream genes. In addition, TSG lowered hepatic triglyceride (TG) and non-esterified fatty acid (NEFA) amounts and increased hepatic adenosine triphosphate (ATP) level in mice after PHx. TSG up-regulated the transcriptional activity of PPARα in vitro. Next results displayed that TSG promoted cell proliferation as well as ATP level in mice primary hepatocytes, which were abolished when PPARα was suppressed. Meanwhile, the cell viability was also elevated in mice primary hepatocytes treated with ATP. CONCLUSION: Activating PPARα-mediated fatty acid ß-oxidation (FAO) pathway led to the production of ATP, which contributed to the TSG-provided promotion on LR after PHx in mice.


Subject(s)
Fatty Acids , Glucosides , Hepatectomy , Liver Regeneration , PPAR alpha , Stilbenes , Animals , PPAR alpha/metabolism , PPAR alpha/genetics , Glucosides/pharmacology , Male , Liver Regeneration/drug effects , Mice , Stilbenes/pharmacology , Fatty Acids/metabolism , Cell Proliferation/drug effects , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Hepatocytes/drug effects , Hepatocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL