Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 6(7): e1333210, 2017.
Article in English | MEDLINE | ID: mdl-28811976

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) remains a deadly disease that is rarely cured, despite many recent successes with immunotherapy for other malignancies. As the human disease is heavily infiltrated by effector T cells, we postulated that accurately modeling the PDA immune microenvironment would allow us to study mechanisms of immunosuppression that could be overcome for therapeutic benefit. Using viable precision-cut slices from fresh PDA, we developed an organotypic culture system for this purpose. We confirmed that cultured slices maintain their baseline morphology, surface area, and microenvironment after at least 6 d in culture, and demonstrated slice survival by MTT assay and by immunohistochemistry staining with Ki-67 and cleaved-Caspase-3 antibodies. Immune cells, including T cells (CD3+, CD8+, and FOXP3+) and macrophages (CD68+, CD163+ and HLA-DR+), as well as stromal myofibroblasts (αSMA+) were present throughout the culture period. Global profiling of the PDA proteome before and after 6 d slice culture indicated that the majority of the immunological proteins identified remain stable during the culture process. Cytotoxic effects of drug treatment (staurosporine, STS and cycloheximide, CHX) on PDA slices culture confirmed that this system can be used to assess functional response and cell survival following drug treatment in both a treatment time- and dose-dependent manner. Using multicolor immunofluorescence, we stained live slices for both cancer cells (EpCAM+) and immune cells (CD11b+ and CD8+). Finally, we confirmed that autologous CFSE-labeled splenocytes readily migrate into co-cultured tumor slices. Thus, our present study demonstrates the potential to use tumor slice cultures to study the immune microenvironment of PDA.

2.
Proteomics Clin Appl ; 11(9-10)2017 09.
Article in English | MEDLINE | ID: mdl-28627758

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by its late diagnosis, poor prognosis and rapid development of drug resistance. Using the data-independent acquisition (DIA) technique, the authors applied a spectral library-based proteomic approach to analyze N-glycosylated peptides in human plasma, in the context of pancreatic cancer study. EXPERIMENTAL DESIGN: The authors extended the application of DIA to the quantification of N-glycosylated peptides enriched from plasma specimens from a clinically well-defined cohort that consists of patients with early stage PDAC, chronic pancreatitis and healthy subjects. RESULTS: The analytical platform was evaluated in light of its robustness for quantitative analysis of large-scale clinical specimens. The authors analysis indicated that the level of N-glycosylated peptides derived from galectin-3 binding proteins (LGALS3BP) were frequently elevated in plasma from PDAC patients, concurrent with the altered N-glycosylation of LGALS3BP observed in the tumor tissue. CONCLUSION AND CLINICAL RELEVANCE: The glycosylation form of LGALS3BP influences its function in the galectin network, which profoundly involves in cancer progression, immune response and drug resistance. As one of the major binding ligands of galectin network, discovery of site specific N-glycosylation changes of LGALS3BP in association of PDAC may provide useful clues to facilitate cancer detection or phenotype stratification.


Subject(s)
Antigens, Neoplasm/blood , Biomarkers, Tumor/blood , Carrier Proteins/blood , Glycoproteins/blood , Pancreatic Neoplasms/blood , Peptide Library , Proteomics , Adenocarcinoma/blood , Adenocarcinoma/diagnosis , Glycosylation , Humans , Pancreatic Neoplasms/diagnosis
3.
J Proteome Res ; 16(2): 665-676, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27995795

ABSTRACT

The advent of high-resolution and frequency mass spectrometry has ushered in an era of data-independent acquisition (DIA). This approach affords enormous multiplexing capacity and is particularly suitable for clinical biomarker studies. However, DIA-based quantification of clinical plasma samples is a daunting task due to the high complexity of clinical plasma samples, the diversity of peptides within the samples, and the high biologic dynamic range of plasma proteins. Here we applied DIA methodology, including a highly reproducible sample preparation and LC-MS/MS analysis, and assessed its utility for clinical plasma biomarker detection. A pancreatic cancer-relevant plasma spectral library was constructed consisting of over 14 000 confidently identified peptides derived from over 2300 plasma proteins. Using a nonhuman protein as the internal standard, various empirical parameters were explored to maximize the reliability and reproducibility of the DIA quantification. The DIA parameters were optimized based on the quantification cycle times and fragmentation profile complexity. Higher analytical and biological reproducibility was recorded for the tryptic peptides without labile residues and missed cleavages. Quantification reliability was developed for the peptides identified within a consistent retention time and signal intensity. Linear analytical dynamic range and the lower limit of quantification were assessed, suggesting the critical role of sample complexity in optimizing DIA settings. Technical validation of the assay using a cohort of clinical plasma indicated the robustness and unique advantage for targeted analysis of clinical plasma samples in the context of biomarker development.


Subject(s)
Biomarkers, Tumor/blood , Pancreatic Neoplasms/blood , Peptides/blood , Proteomics , Chromatography, Liquid , Humans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...