Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 15(6): 965-971, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38894922

ABSTRACT

2-Arachidonoyl glycerol (2-AG) is the principal endogenously produced ligand for the cannabinoid CB1 and CB2 receptors (CBRs). The lack of potent and efficacious 2-AG ligands with resistance against metabolizing enzymes represents a significant void in the armamentarium of research tools available for studying eCB system molecular constituents and their function. Herein we report the first endocannabinoid glyceride templates with remarkably high potency and efficacy at CBRs. Two of our lead chiral 2-AG analogs, namely, (13S)- and (13R)-Me-2-AGs, potently inhibit excitatory neurotransmission via CB1 while they are endowed with excellent resistance to the oxidizing enzyme COX-2. Our SAR results are supported by docking studies of the key analog and 2-AG on the crystal structures of CB1.

2.
Eur J Pharmacol ; 960: 176168, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38059442

ABSTRACT

The synthetic forms of delta-9-tetrahydrocannabinol (Δ9-THC), dronabinol or nabilone, have been approved to treat several indications. However, due to safety concerns their clinical utility remains limited. Consequently, there is a need for developing cannabinoid (CB) ligands that display better behavioral pharmacological profiles than Δ9-THC. Here, we utilized drug discrimination methods to compare the interoceptive effects of CB ligands that vary in potency, efficacy, and selectivity at the CB receptors, including two ligands, AM411 and AM4089, that show CB1 partial agonist-like actions in vitro. Male rats were trained to discriminate 0.1 mg/kg AM2201 from saline under a fixed-ratio (FR) 10 response schedule of food reinforcement. After establishing AM2201's discriminative-stimulus effects, pretreatment tests with the CB1 antagonist/inverse agonist rimonabant blocked AM2201's effects, whereas the peripherally-restricted antagonist AM6545 had no effect. Next, the generalization profiles of AM411 and AM4089 with CB1 full agonists (JWH-018, CP-55,940, AM8936), partial agonist (Δ9-THC), and non-cannabinoids (fentanyl, atropine) were compared. The CBs either fully (AM2201, CP-55,940, JWH-018, AM8936, Δ9-THC) or partially (AM411, AM4089) substituted for AM2201, whereas fentanyl and atropine did not produce AM2201-like effects. All CB drugs were more potent than Δ9-THC and correlation analysis confirmed that the relative behavioral potencies of CBs corresponded strongly with their relative affinities at the CB1 but not CB2 receptors. Together, our results further demonstrate that AM411 and AM4089 exhibit better pharmacological profiles compared to Δ9-THC, in that they are more potent and display in vivo partial agonist-like actions that are centrally mediated via CB1 receptors.


Subject(s)
Cannabinoids , Dronabinol , Rats , Male , Animals , Dronabinol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Drug Inverse Agonism , Cannabinoids/pharmacology , Fentanyl , Atropine Derivatives , Receptor, Cannabinoid, CB1 , Dose-Response Relationship, Drug
3.
Nat Commun ; 14(1): 2672, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160876

ABSTRACT

Endocannabinoids (eCBs) are endogenous ligands of the cannabinoid receptor 1 (CB1), a G protein-coupled receptor that regulates a number of therapeutically relevant physiological responses. Hence, understanding the structural and functional consequences of eCB-CB1 interactions has important implications for designing effective drugs targeting this receptor. To characterize the molecular details of eCB interaction with CB1, we utilized AMG315, an analog of the eCB anandamide to determine the structure of the AMG315-bound CB1 signaling complex. Compared to previous structures, the ligand binding pocket shows some differences. Using docking, molecular dynamics simulations, and signaling assays we investigated the functional consequences of ligand interactions with the "toggle switch" residues F2003.36 and W3566.48. Further, we show that ligand-TM2 interactions drive changes to residues on the intracellular side of TM2 and are a determinant of efficacy in activating G protein. These intracellular TM2 rearrangements are unique to CB1 and are exploited by a CB1-specific allosteric modulator.


Subject(s)
Biological Assay , Endocannabinoids , Ligands , Gene Rearrangement , Molecular Dynamics Simulation
4.
Front Neurosci ; 16: 998351, 2022.
Article in English | MEDLINE | ID: mdl-36248648

ABSTRACT

Aim: There is increasing concern that cannabinoid exposure during adolescence may disturb brain maturation and produce long-term cognitive deficits. However, studies in human subjects have provided limited evidence for such causality. The present study utilized behavioral and neuroimaging endpoints in female non-human primates to examine the effects of acute and chronic exposure during adolescence to the cannabinoid receptor full agonist, AM2389, on cognitive processing and brain function and chemistry. Materials and methods: Adolescent female rhesus macaques were trained on a titrating-delay matching-to-sample (TDMTS) touchscreen task that assays working memory. TDMTS performance was assessed before and during chronic exposure to AM2389, following antagonist (rimonabant) administration, and after discontinuation of the chronic regimen. Resting-state fMRI connectivity and magnetic resonance spectroscopy data were acquired prior to drug treatment, during chronic exposure, and following its discontinuation. Voxels were placed in the medial orbitofrontal cortex (mOFC), a region involved in memory processing that undergoes maturation during adolescence. Results: TDMTS performance was dose-dependently disrupted by acute AM2389; however, chronic treatment resulted in tolerance to these effects. TDMTS performance also was disrupted by discontinuation of the chronic regimen but surprisingly, not by rimonabant administration during chronic AM2389 treatment. mOFC N-acetylaspartate/creatine ratio decreased after acute and chronic administration but returned to baseline values following discontinuation of chronic treatment. Finally, intra-network functional connectivity (mOFC) increased during the chronic regimen and returned to baseline values following its discontinuation. Conclusion: Neural effects of a cannabinergic drug may persist during chronic exposure, notwithstanding the development of tolerance to behavioral effects. However, such effects dissipate upon discontinuation, reflecting the restorative capacity of affected brain processes.

5.
Mol Pharmacol ; 102(6): 259-268, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36153039

ABSTRACT

The two main constituents of cannabis are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). While Δ9-THC pharmacology has been studied extensively, CBD-long considered inactive-is now the subject of vigorous research related to epilepsy, pain, and inflammation and is popularly embraced as a virtual cure-all. However, our understanding of CBD pharmacology remains limited, although CBD inhibits cannabinoid CB1 receptor signaling, likely as a negative allosteric modulator. Cannabis synthesizes (-)-CBD, but CBD can also exist as an enantiomer, (+)-CBD. We enantioselectively synthesized both CBD enantiomers using established conditions and describe here a new, practical, and reliable, NMR-based method for confirming the enantiomeric purity of two CBD enantiomers. We also investigated the pharmacology of (+)-CBD in autaptic hippocampal neurons, a well-characterized neuronal model of endogenous cannabinoid signaling, and in CHO-K1 cells. We report the inhibition constant for displacing CP55,940 at CB1 by (+)-CBD, is 5-fold lower than (-)-CBD. We find that (+)-CBD is ∼10 times more potent at inhibiting depolarization-induced suppression of excitation (DSE), a form of endogenous cannabinoid-mediated retrograde synaptic plasticity. (+)-CBD also inhibits CB1 suppression of cAMP accumulation but with less potency, indicating that the signaling profiles of the enantiomers differ in a pathway-specific manner. In addition, we report that (+)-CBD stereoselectively and potently activates the sphingosine-1 phosphate (S1P) receptors, S1P1 and S1P3 These results provide an attractive method for synthesizing and distinguishing enantiomers of CBD and related phytocannabinoids and provide further evidence that these enantiomers have their own unique and interesting signaling properties. SIGNIFICANCE STATEMENT: Cannabidiol (CBD) is the subject of considerable scientific and popular interest, but we know little of the enantiomers of CBD. We find that the enantiomer (+)-CBD is substantially more potent inhibitor of cannabinoid CB1 receptors and that it activates sphingosine-1-phosphate receptors in an enantiomer-specific manner; we have additionally developed an improved method for the synthesis of enantiomers of CBD and related compounds.


Subject(s)
Cannabidiol , Cannabidiol/pharmacology , Dronabinol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Endocannabinoids , Signal Transduction , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2
7.
Behav Pharmacol ; 33(2&3): 184-194, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35288509

ABSTRACT

Although the behavioral effects of acute and chronic exposure to cannabinoids have been extensively studied in mice, spontaneous withdrawal following exposure to cannabinoids has not been well characterized in this species. To address this issue, different groups of mice were treated for 5 days with saline, 20-36 mg/kg/day of the CB partial agonist Δ9-tetrahydrocannabinol (Δ9-THC), or 0.06-0.1 mg/kg/day of the CB high-efficacy agonist AM2389. Initial studies assessed changes in observable behavior (paw tremors) that were scored from the recordings taken at 4 or 24 h after the last injection. Subsequently, radiotelemetry was used to continuously measure body temperature and locomotor activity before (baseline), during, and after the 5-day dosing regimens. Results show that increases in paw tremors occurred following 5-day exposure to AM2389 or Δ9-THC. In telemetry studies, acute AM2389 or THC decreased both temperature and activity. Rapid tolerance occurred to the hypothermic effects of the cannabinoids, whereas locomotor activity continued to be suppressed following each drug injection. In contrast, increases in locomotor activity were evident 12-72 h after discontinuing daily injections of either 0.06 or 0.1 mg/kg/day AM2389. Increases in locomotor activity were also noted in mice treated daily with 30 or 36, but not 20 mg/kg/day Δ9-THC; these effects were smaller and appeared later than effects seen in AM2389-treated mice. These results indicate that the discontinuation of daily treatment with a CB high-efficacy agonist will yield evidence of spontaneous withdrawal that may reflect prior dependence, and that the degree of cannabinoid dependence may vary in relation to the dose or efficacy of the agonist injected daily.


Subject(s)
Cannabinoids , Animals , Cannabinoids/pharmacology , Dronabinol/pharmacology , Mice , Piperidines/pharmacology , Pyrazoles/pharmacology , Rimonabant , Tremor
8.
Behav Pharmacol ; 33(2&3): 195-205, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35288510

ABSTRACT

Cessation of cannabinoid use in humans often leads to a withdrawal state that includes sleep disruption. Despite important health implications, little is known about how cannabinoid abstention affects sleep architecture, in part because spontaneous cannabinoid withdrawal is difficult to model in animals. In concurrent work we report that repeated administration of the high-efficacy cannabinoid 1 (CB1) receptor agonist AM2389 to mice for 5 days led to heightened locomotor activity and paw tremor following treatment discontinuation, potentially indicative of spontaneous cannabinoid withdrawal. Here, we performed parallel studies to examine effects on sleep. Using implantable electroencephalography (EEG) and electromyography (EMG) telemetry we examined sleep and neurophysiological measures before, during, and after 5 days of twice-daily AM2389 injections. We report that AM2389 produces decreases in locomotor activity that wane with repeated treatment, whereas discontinuation produces rebound increases in activity that persist for several days. Likewise, AM2389 initially produces profound increases in slow-wave sleep (SWS) and decreases in rapid eye movement (REM) sleep, as well as consolidation of sleep. By the third AM2389 treatment, this pattern transitions to decreases in SWS and total time sleeping. This pattern persists following AM2389 discontinuation and is accompanied by emergence of sleep fragmentation. Double-labeling immunohistochemistry for hypocretin/orexin (a sleep-regulating peptide) and c-Fos (a neuronal activity marker) in lateral hypothalamus revealed decreases in c-Fos/orexin+ cells following acute AM2389 and increases following discontinuation, aligning with the sleep changes. These findings indicate that AM2389 profoundly alters sleep in mice and suggest that sleep disruption following treatment cessation reflects spontaneous cannabinoid withdrawal.


Subject(s)
Cannabinoids , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Electroencephalography , Male , Mice , Orexins , Sleep , Sleep, REM/physiology
9.
Eur J Med Chem ; 230: 114027, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35051750

ABSTRACT

In earlier work, we explored the SAR for the C3 side chain pharmacophore in the hexahydrocannabinol template represented by the drug nabilone, which resulted in the development of AM2389. In an effort for further optimization, we have merged features of nabilone and AM2389 and explored the C3 side chain with varying chain lengths and terminal substitutions. Of the compounds described here, a nabilone analog, AM8936, with the C6'-cyano-substituted side chain, was identified as the most successful analog capable of serving as a potential candidate for further development and a valuable tool for further in vivo studies. AM8936 behaved as a balanced and potent CB1 agonist in functional assays and was a potent and efficacious CB1 agonist in vivo. Our SAR studies are highlighted with the docking of AM8936 on the crystal structure of the hCB1 receptor.


Subject(s)
Dronabinol , Receptor, Cannabinoid, CB1 , Dronabinol/analogs & derivatives , Dronabinol/pharmacology , Receptor, Cannabinoid, CB1/agonists , Structure-Activity Relationship
10.
Nature ; 601(7893): 452-459, 2022 01.
Article in English | MEDLINE | ID: mdl-34912117

ABSTRACT

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.


Subject(s)
Algorithms , Combinatorial Chemistry Techniques , Drug Discovery , Libraries, Digital , Ligands , Molecular Docking Simulation , rho-Associated Kinases
11.
Cannabis Cannabinoid Res ; 7(5): 621-627, 2022 10.
Article in English | MEDLINE | ID: mdl-34935460

ABSTRACT

Introduction: Cannabis acceptance and use continues to rise despite the gaps in knowledge regarding the mechanisms of cannabinoids and the endocannabinoid system in many physiological functions, including respiratory influence. Methods: With recent evidence of cannabinoid receptor 1 (CB1R) presence in the collection of respiratory neurons in the brainstem, as well as in the peripheral lung tissue, it is vital that the mechanisms involved in central and peripheral CB1R modulation of respiratory function be delineated. In this study we sought to define the roles of central versus peripheral CB1R activation on respiratory depression alone and in combination with morphine using whole body plethysmography. Results: We show that the peripherally restricted CB1 agonist (4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3yl]ethyl}morpholine [PrNMI] 0.3, 0.6, and 1 mg/kg) does not induce respiratory depression, while our previous studies showed that a central penetrating synthetic cannabinoid does induce respiratory depression. Significantly, the combination of morphine with the peripheral CB1 agonist, PrNMI, attenuated morphine-induced respiratory depression. Conclusions: These studies support that a peripherally restricted CB1R agonist may be a unique strategy to attenuate the respiratory depression associated with opioid therapy.


Subject(s)
Cannabinoids , Respiratory Insufficiency , Humans , Morphine/adverse effects , Cannabinoid Receptor Agonists/pharmacology , Analgesics, Opioid/adverse effects , Endocannabinoids , Cannabinoids/adverse effects , Morpholines/pharmacology , Brain , Respiratory Insufficiency/chemically induced , Receptors, Cannabinoid
12.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613692

ABSTRACT

Oxidative stress, neurodegeneration, neuroinflammation, and vascular leakage are believed to play a key role in the early stage of diabetic retinopathy (ESDR). The aim of this study was to investigate the blockade of cannabinoid receptor 1 (CB1R) and activation of cannabinoid receptor 2 (CB2R) as putative therapeutics for the treatment of the early toxic events in DR. Diabetic rats [streptozotocin (STZ)-induced] were treated topically (20 µL, 10 mg/mL), once daily for fourteen days (early stage DR model), with SR141716 (CB1R antagonist), AM1710 (CB2R agonist), and the dual treatment SR141716/AM1710. Immunohistochemical-histological, ELISA, and Evans-Blue analyses were performed to assess the neuroprotective and vasculoprotective properties of the pharmacological treatments on diabetes-induced retinal toxicity. Activation of CB2R or blockade of CB1R, as well as the dual treatment, attenuated the nitrative stress induced by diabetes. Both single treatments protected neural elements (e.g., RGC axons) and reduced vascular leakage. AM1710 alone reversed all toxic insults. These findings provide new knowledge regarding the differential efficacies of the cannabinoids, when administered topically, in the treatment of ESDR. Cannabinoid neuroprotection of the diabetic retina in ESDR may prove therapeutic in delaying the development of the advanced stage of the disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Animals , Rats , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/drug therapy , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Rimonabant , Streptozocin
13.
Cannabis Cannabinoid Res ; 6(5): 401-412, 2021 10.
Article in English | MEDLINE | ID: mdl-33998869

ABSTRACT

Introduction: An escalating number of fatalities resulting from accidental opioid overdoses typically attributed to respiratory depression continue to define the opioid epidemic. Opioid respiratory depression results from a decrease in reflexive inspiration within the preBötzinger complex in the brainstem. Objective: Cannabinoid receptor agonism is reported to enhance opioid analgesia, yet whether cannabinoids enhance or inhibit opioid-induced respiratory depression is unknown. Methods: Studies herein sought to define the roles of cannabinoid-1 receptor (CB1R) and cannabinoid-2 receptor (CB2R) on respiratory depression using selective agonists alone and in combination with morphine in male mice. Results: Using whole body plethysmography, the nonselective CB1R and CB2R agonist (Δ9-tetrahydrocannabinol) and the CB1R synthetic cannabinoid, AM356, induced respiratory depression, whereas the well-published selective CB2 agonist, JWH 133, and the novel CB2 agonist (AM2301) did not. Moreover, a selective CB2R agonist (AM2301) significantly attenuated morphine sulfate-induced respiratory depression. Conclusion: Notably, findings suggest that attenuation of opioid-induced respiratory depression relies on CB2R activation, supporting selective CB2R agonism as an opioid adjunct therapy.


Subject(s)
Cannabinoids , Respiratory Insufficiency , Analgesics, Opioid/adverse effects , Animals , Cannabinoid Receptor Agonists/pharmacology , Male , Mice , Morphine/adverse effects , Respiratory Insufficiency/chemically induced
14.
J Hum Lact ; 37(4): 813-820, 2021 11.
Article in English | MEDLINE | ID: mdl-33656382

ABSTRACT

BACKGROUND: Dietary long-chain polyunsaturated fatty acids are known to benefit infant development. After birth, human milk provides arachidonic, eicosapentaenoic, and docosahexaenoic acids to the infant. Endocannabinoids are endogenous lipid mediators derived from the long-chain polyunsaturated fatty acids. Although the roles and the mechanisms of action are not fully understood, previous researchers have suggested that endocannabinoids might play a role in infant feeding behavior. RESEARCH AIMS: To assess (i) maternal dietary intake of long-chain polyunsaturated fatty acids and (ii) their relationship to concentrations of fatty acids and derived endocannabinoids in human milk. METHODS: For this exploratory-longitudinal study, participants (N = 24) provided dietary intake data and milk samples. Fatty acids and derived endocannabinoids: Arachidonylethanolamide, arachidonoylglycerol, docosahexaenoyl glycerol, eicosapentaenoyl ethanolamide, and eicosapenaenoyl glycerol were identified in their milk by liquid chromatography-mass spectrometry and correlations to dietary fatty acids were assessed. RESULTS: Participants were not consuming recommended amounts of docosahexaenoic acid. Significant correlations (p ≤ .05) were only found between dietary docosahexaenoic and eicosapentaenoic acids and the concentrations of these in human milk. Moreover, only dietary docosahexaenoic acid was correlated (p = .031) with its corresponding endocannabinoid, docosahexaenoyl glycerol. CONCLUSIONS: To the best of our knowledge, this may be one of the first studies evaluating relationships between dietary long-chain polyunsaturated fatty acids and multiple endocannabinoids in human milk. Our findings suggest that endocannabinoid concentrations could be modulated by dietary precursors. Future research studies can be designed based on these data to better elucidate the roles of endocannabinoids in human milk for infant health and development.


Subject(s)
Endocannabinoids , Milk, Human , Breast Feeding , Child , Fatty Acids , Female , Humans , Infant , Longitudinal Studies
15.
J Med Chem ; 64(7): 3870-3884, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33761251

ABSTRACT

We report the development of novel cannabinergic probes that can stabilize the cannabinoid receptors (CBRs) through tight binding interactions. Ligand design involves the introduction of select groups at a judiciously chosen position within the classical hexahydrocannabinol template (monofunctionalized probes). Such groups include the electrophilic isothiocyanato, the photoactivatable azido, and the polar cyano moieties. These groups can also be combined to produce bifunctionalized probes potentially capable of interacting at two distinct sites within the CBR-binding domains. These novel compounds display remarkably high binding affinities for CBRs and are exceptionally potent agonists. A key ligand (27a, AM11245) exhibits exceptionally high potency in both in vitro and in vivo assays and was designated as "megagonist," a property attributed to its tight binding profile. By acting both centrally and peripherally, 27a distinguishes itself from our previously reported "megagonist" AM841, whose functions are restricted to the periphery.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Analgesics/chemical synthesis , Analgesics/metabolism , Analgesics/pharmacology , Animals , Body Temperature Regulation/drug effects , CHO Cells , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/metabolism , Cannabinoids/chemical synthesis , Cannabinoids/metabolism , Cricetulus , Humans , Ligands , Locomotion/drug effects , Male , Mice , Molecular Docking Simulation , Rats
16.
Bioorg Med Chem Lett ; 38: 127882, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33636308

ABSTRACT

As a continuation of earlier work on classical cannabinoids bearing bulky side chains we report here the design, synthesis, and biological evaluation of 3'-functionalized oxa-adamantyl cannabinoids as a novel class of cannabinergic ligands. Key synthetic steps involve nucleophilic addition/transannular cyclization of aryllithium to epoxyketone in the presence of cerium chloride and stereoselective construction of the tricyclic cannabinoid nucleus. The synthesis of the oxa-adamantyl cannabinoids is convenient, and amenable to scale up allowing the preparation of these analogs in sufficient quantities for detailed in vitro evaluation. The novel oxa-adamantyl cannabinoids reported here were found to be high affinity ligands for the CB1 and CB2 cannabinoid receptors. In the cyclase assay these compounds were found to behave as potent and efficacious CB1 receptor agonists. Isothiocyanate analog AM10504 is capable of irreversibly labeling both the CB1 and CB2 receptors.


Subject(s)
Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Cannabinoids/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
17.
J Pharmacol Exp Ther ; 374(3): 462-468, 2020 09.
Article in English | MEDLINE | ID: mdl-32561684

ABSTRACT

Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge. Although cannabinergic medications have been used in certain treatment-resistant populations, Food and Drug Administration-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications. The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg) against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys. Pretreatment with 0.1 mg/kg Δ9-THC blocked nicotine-induced emesis and reduced hypersalivation in all subjects and blocked LiCl-induced emesis and reduced hypersalivation in three of four subjects. Pretreatment with 10 mg/kg mAEA blocked nicotine-induced emesis in three of four subjects and LiCl-induced emesis in one of four subjects and reduced both nicotine- and LiCl-induced hypersalivation. Antiemetic effects of Δ9-THC and mAEA were reversed by rimonabant pretreatment, providing verification of cannabinoid receptor type 1 mediation. These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggest that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side effect liability. SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved antiemetic pharmacotherapies has been impeded by a paucity of animal models. The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid analog methanandamide in nonhuman primates.


Subject(s)
Antiemetics/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Animals , Antiemetics/therapeutic use , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Cannabinoid Receptor Agonists/therapeutic use , Dronabinol/pharmacology , Dronabinol/therapeutic use , Drug Interactions , Male , Receptor, Cannabinoid, CB1/agonists , Saimiri , Salivation/drug effects , Vomiting/drug therapy
18.
Molecules ; 25(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041131

ABSTRACT

A new approach to synthesize cannabilactones using Suzuki cross-coupling reaction followed by one-step demethylation-cyclization is presented. The two key cannabilactone prototypes AM1710 and AM1714 were obtained selectively in high overall yields and in a lesser number of synthetic steps when compared to our earlier synthesis. The new approach expedited the synthesis of cannabilactone analogs with structural modifications at the four potential pharmacophoric regions.


Subject(s)
Cannabinoids/chemical synthesis , Chromones/chemical synthesis
19.
Cell ; 180(4): 655-665.e18, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32004463

ABSTRACT

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/chemistry , Signal Transduction , Allosteric Regulation , Allosteric Site , Animals , CHO Cells , Cannabinoid Receptor Agonists/chemistry , Cannabinoids/chemistry , Cannabinoids/pharmacology , Cell Line, Tumor , Cholesterol/chemistry , Cholesterol/pharmacology , Cricetinae , Cricetulus , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , Molecular Dynamics Simulation , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Sf9 Cells , Spodoptera
20.
J Pharmacol Exp Ther ; 372(1): 119-127, 2020 01.
Article in English | MEDLINE | ID: mdl-31641018

ABSTRACT

Despite a growing acceptance that withdrawal symptoms can emerge following discontinuation of cannabis products, especially in high-intake chronic users, there are no Food and Drug Administration (FDA)-approved treatment options. Drug development has been hampered by difficulties studying cannabis withdrawal in laboratory animals. One preclinical approach that has been effective in studying withdrawal from drugs in several pharmacological classes is antagonist drug discrimination. The present studies were designed to examine this paradigm in squirrel monkeys treated daily with the long-acting CB1 agonist AM2389 (0.01 mg/kg) and trained to discriminate the CB1 inverse agonist/antagonist rimonabant (0.3 mg/kg) from saline. The discriminative-stimulus effects of rimonabant were both dose and time dependent and, importantly, could be reproduced by discontinuation of agonist treatment. Antagonist substitution tests with the CB1 neutral antagonists AM4113 (0.03-0.3 mg/kg), AM6527 (0.03-1.0 mg/kg), and AM6545 (0.03-1.0 mg/kg) confirmed that the rimonabant discriminative stimulus also could be reproduced by CB1 antagonists lacking inverse agonist action. Agonist substitution tests with the phytocannabinoid ∆9-tetrahydrocannabinol (0.1-1.0 mg/kg), synthetic CB1 agonists nabilone (0.01-0.1 mg/kg), AM4054 (0.01-0.03 mg/kg), K2/Spice compound JWH-018 (0.03-0.3 mg/kg), FAAH-selective inhibitors AM3506 (0.3-5.6 mg/kg), URB597 (3.0-5.6 mg/kg), and nonselective FAAH/MGL inhibitor AM4302 (3.0-10.0 mg/kg) revealed that only agonists with CB1 affinity were able to reduce the rimonabant-like discriminative stimulus effects of withholding daily agonist treatment. Although the present studies did not document physiologic disturbances associated with withdrawal, the results are consistent with the view that the cannabinoid antagonist drug discrimination paradigm provides a useful screening procedure for examining the ability of candidate medications to attenuate the interoceptive stimuli provoked by cannabis discontinuation. SIGNIFICANCE STATEMENT: Despite a growing acceptance that withdrawal symptoms can emerge following the discontinuation of cannabis products, especially in high-intake chronic users, there are no FDA-approved pharmacotherapies to assist those seeking treatment. The present studies systematically examined cannabinoid antagonist drug discrimination, a preclinical animal model that is designed to appraise the ability of candidate medications to attenuate the interoceptive effects that accompany abrupt cannabis abstinence.


Subject(s)
Cannabinoid Receptor Antagonists/therapeutic use , Discrimination, Psychological , Disease Models, Animal , Substance Withdrawal Syndrome/drug therapy , Animals , Benzopyrans/administration & dosage , Benzopyrans/adverse effects , Benzopyrans/therapeutic use , Cannabinoid Receptor Agonists/administration & dosage , Cannabinoid Receptor Agonists/adverse effects , Cannabinoid Receptor Agonists/therapeutic use , Cannabinoid Receptor Antagonists/administration & dosage , Cannabinoid Receptor Antagonists/adverse effects , Drug Evaluation, Preclinical/methods , Drug Substitution/methods , Male , Rimonabant/administration & dosage , Rimonabant/adverse effects , Rimonabant/therapeutic use , Saimiri , Substance Withdrawal Syndrome/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...