Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(25): 29231-29246, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34137251

ABSTRACT

With the increasing volume of cardiovascular surgeries and the rising adoption rate of new methodologies that serve as a bridge to cardiac transplantation and that require multiple surgical interventions, the formation of postoperative intrapericardial adhesions has become a challenging problem that limits future surgical procedures, causes serious complications, and increases medical costs. To prevent this pathology, we developed a nanotechnology-based self-healing drug delivery hydrogel barrier composed of silicate nanodisks and polyethylene glycol with the ability to coat the epicardial surface of the heart without friction and locally deliver dexamethasone, an anti-inflammatory drug. After the fabrication of the hydrogel, mechanical characterization and responses to shear, strain, and recovery were analyzed, confirming its shear-thinning and self-healing properties. This behavior allowed its facile injection (5.75 ± 0.15 to 22.01 ± 0.95 N) and subsequent mechanical recovery. The encapsulation of dexamethasone within the hydrogel system was confirmed by 1H NMR, and controlled release for 5 days was observed. In vitro, limited cellular adhesion to the hydrogel surface was achieved, and its anti-inflammatory properties were confirmed, as downregulation of ICAM-1 and VCAM-1 was observed in TNF-α activated endothelial cells. In vivo, 1 week after administration of the hydrogel to a rabbit model of intrapericardial injury, superior efficacy was observed when compared to a commercial adhesion barrier, as histological and immunohistochemical examination revealed reduced adhesion formation and minimal immune infiltration of CD3+ lymphocytes and CD68+ macrophages, as well as NF-κß downregulation. We presented a novel nanostructured drug delivery hydrogel system with unique mechanical and biological properties that act synergistically to prevent cellular infiltration while providing local immunomodulation to protect the intrapericardial space after a surgical intervention.


Subject(s)
Drug Delivery Systems/methods , Nanomedicine/methods , Nanostructures , Pericardium/surgery , Tissue Adhesions/prevention & control , Animals , Cardiac Surgical Procedures/adverse effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Disease Models, Animal , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Postoperative Complications/prevention & control , Rabbits
2.
Carcinogenesis ; 41(11): 1529-1542, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32603404

ABSTRACT

K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts. In the present study, we manipulated estrogen and NF-κB signaling to study the mechanisms underlying this intriguing gender-disparity. In LR/Stat3Δ/Δ females, estrogen deprivation by bilateral oophorectomy resulted in higher tumor burden, an induction of NF-κB-driven immunosuppressive response, and reduced anti-tumor cytotoxicity, whereas estrogen replacement reversed these changes. On the other hand, exogenous estrogen in males successfully inhibited tumorigenesis, attenuated NF-κB-driven immunosuppression and boosted anti-tumor immunity. Mechanistically, genetic targeting of epithelial NF-κB activity resulted in reduced tumorigenesis and enhanced the anti-tumor immune response in LR/Stat3Δ/Δ males, but not females. Our data suggest that estrogen exerts a context-specific anti-tumor effect through inhibiting NF-κB-driven tumor-promoting inflammation and provide insights into developing novel personalized therapeutic strategies for K-ras mutant LUAD.


Subject(s)
Adenocarcinoma of Lung/immunology , Cell Transformation, Neoplastic/immunology , Estrogens/metabolism , Immunomodulation , Lung Neoplasms/immunology , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Female , Humans , Immunity/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mutation , NF-kappa B/genetics , Proto-Oncogene Proteins p21(ras)/genetics , STAT3 Transcription Factor/genetics , Tumor Cells, Cultured
3.
Cancer Immunol Res ; 6(7): 788-797, 2018 07.
Article in English | MEDLINE | ID: mdl-29764837

ABSTRACT

Somatic KRAS mutations are the most common oncogenic variants in lung cancer and are associated with poor prognosis. Using a Kras-induced lung cancer mouse model, CC-LR, we previously showed a role for inflammation in lung tumorigenesis through activation of the NF-κB pathway, along with induction of interleukin 6 (IL6) and an IL17-producing CD4+ T-helper cell response. IL22 is an effector molecule secreted by CD4+ and γδ T cells that we previously found to be expressed in CC-LR mice. IL22 mostly signals through the STAT3 pathway and is thought to act exclusively on nonhematopoietic cells with basal IL22 receptor (IL22R) expression on epithelial cells. Here, we found that higher expression of IL22R1 in patients with KRAS-mutant lung adenocarcinoma was an independent indicator of poor recurrence-free survival. We then showed that genetic ablation of Il22 in CC-LR mice (CC-LR/IL22KO mice) caused a significant reduction in tumor number and size. This was accompanied by significantly lower tumor cell proliferation, angiogenesis, and STAT3 activation. Il22 ablation was also associated with significant reduction in lung-infiltrating inflammatory cells and expression of protumor inflammatory cytokines. Conversely, this was accompanied with increased antitumor Th1 and cytotoxic CD8+ T-cell responses, while suppressing the protumor immunosuppressive T regulatory cell response. In CC-LR/IL22KO mice, we found significantly reduced expression of core stemness genes and the number of prototypical SPC+CCSP+ stem cells. Thus, we conclude that IL22 promotes Kras-mutant lung tumorigenesis by driving a protumor inflammatory microenvironment with proliferative, angiogenic, and stemness contextual cues in epithelial/tumor cells. Cancer Immunol Res; 6(7); 788-97. ©2018 AACR.


Subject(s)
Interleukins/metabolism , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Mutation , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Animals, Genetically Modified , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Gene Expression , Humans , Immunohistochemistry , Interleukins/genetics , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins p21(ras)/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Tumor Microenvironment , Interleukin-22
SELECTION OF CITATIONS
SEARCH DETAIL
...