Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Microorganisms ; 12(5)2024 May 14.
Article En | MEDLINE | ID: mdl-38792818

Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.

2.
Infection ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38557967

PURPOSE: Candida auris, an emerging multidrug-resistant yeast, has been reported worldwide. In Italy, the first case was reported in 2019. We describe the first case of C. auris, imported from Greece, in Milan, using whole genome sequencing to characterise mutations associated with antifungal resistance. CASE PRESENTATION: On October 2022 an 80-year-old Italian man was hospitalised in Greece. In the absence of clinical improvement, the patient was transferred to our hospital, in Italy, where blood culture resulted positive for C. auris. Despite therapy, the patient died of septic shock. In a phylogenetic analysis the genome was assigned to Clade I with strains from Kenya, United Arab Emirates and India. D1/D2 region resulted identical to a Greek strain, as for many other strains from different World regions, highlighting the diffusion of this strain. CONCLUSION: Importation of C. auris from abroad has been previously described. We report the first case of C. auris imported into Italy from Greece, according to phylogenetic analysis. This case reinforces the need for monitoring critically ill hospitalised patients also for fungi and addresses the need for the standardisation of susceptibility testing and strategies for diagnosis and therapy.

3.
Commun Biol ; 7(1): 468, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632370

Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.


Genetic Variation , Serratia marcescens , Serratia marcescens/genetics , Ecosystem , Gene Flow , Genomics
4.
iScience ; 27(4): 109402, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38510115

Serratia marcescens is an opportunistic pathogen that survives in inhospitable environments causing large outbreaks, particularly in neonatal intensive care units (NICUs). Genomic studies revealed that most S. marcescens nosocomial infections are caused by a specific clone (here "Infectious clone"). Whole genome sequencing (WGS) is the only portable method able to identify this clone, but it requires days to obtain results. We present a cultivation-free hypervariable-locus melting typing (HLMT) protocol for the fast detection and typing of S. marcescens, with 100% detection capability on mixed samples and a limit of detection that can reach the 10 genome copies. The protocol was able to identify the S. marcescens infectious clone with 97% specificity and 96% sensitivity when compared to WGS, yielding typing results portable among laboratories. The protocol is a cost and time saving method for S. marcescens detection and typing for large environmental/clinical surveillance screenings, also in low-middle income countries.

5.
STAR Protoc ; 4(4): 102548, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37717214

Here, we present a computational protocol to perform a spatiotemporal reconstruction of an epidemic. We describe steps for using epidemiological data to depict how the epidemic changes over time and for employing clustering analysis to group geographical units that exhibit similar temporal epidemic progression. We then detail procedures for analyzing the temporal and spatial dynamics of the epidemic within each cluster. This protocol has been developed to be used on historical data but could also be applied to modern epidemiological data. For complete details on the use and execution of this protocol, please refer to Galli et al. (2023).1.


Cluster Analysis
6.
iScience ; 26(5): 106704, 2023 May 19.
Article En | MEDLINE | ID: mdl-37187697

In 1630, a devastating plague epidemic struck Milan, one of the most important Italian cities of that time, deeply affecting its demography and economy for decades. The lack of digitized historical data strongly limits our comprehension of that important event. In this work, we digitized and analyzed the Milan death registers of 1630. The study revealed that the epidemic evolved differently among the areas of the city. Indeed, we were able to group the parishes of the city (comparable with modern neighborhoods) in two groups based on their epidemiological curves. These different epidemiological progressions could reflect socio-economical and/or demographic features specific of the neighborhoods, opening questions about the relationship between these features and the evolution of epidemics in the pre-modern period. The study of historical records, like the one presented here, can help us to better understand European history and pre-modern epidemics.

7.
Article En | MEDLINE | ID: mdl-36833481

Historical death registration was conducted primarily to assess the presence of plague. The Liber Mortuorum of Milan was one of Europe's first registers with many socio-demographical details. In this work, we consider 1480 to make spatial and temporal analyses of the event of death to find possible explanations about the events' distribution and the events' trend over time. The spatial analyses involved Moran's I, the LISA, and the heatmaps; the temporal analysis applied the Durbin-Watson test. All the analyses were conducted separately on all subjects (1813), children (765), and adults (1046). Contrade (districts) were considered for spatial analysis. Moran's I and the Durbin Watson test were significant on all subjects and children's analyses, and the LISA showed the same results for those groups. Children may significantly impact the distribution of death and the trend over time. At least half of the children were 0 years old, and survival in the very first childhood period was closely linked to the family, so that it could be a proxy of the conditions of an area.


Advance Directives , Child , Humans , Infant, Newborn , Spatial Analysis , Seasons
8.
Pathogens ; 11(11)2022 Oct 25.
Article En | MEDLINE | ID: mdl-36364985

Bacteria of the Borrelia burgdorferi sensu lato complex are the causative agents of Lyme borreliosis (LB). Even if the conventional diagnosis of LB does not rely on the species itself, an accurate species identification within the complex will provide a deepened epidemiological scenario, a better diagnosis leading to a more targeted therapeutic approach, as well as promote the general public's awareness. A comparative genomics approach based on the 210 Borrelia spp. genomes available in 2019 were used to set up three species-specific PCR protocols, able to detect and provide species typing of Borrelia afzelii, Borrelia burgdorferi sensu stricto (s.s.) and Borrelia garinii, the three most common and important human pathogenic Lyme Borrelia species in Europe. The species-specificity of these protocols was confirmed on previously identified B. afzelii, B. burgdorferi s.s. and B. garinii specimens detected in Ixodes ricinus samples. In addition, the protocols were validated on 120 DNA samples from ticks collected in Sweden, showing 88% accuracy, 100% precision, 72% sensitivity and 100% specificity. The proposed approach represents an innovative tool in epidemiological studies focused on B. burgdorferi s.l. occurrence in ticks, and future studies could suggest its helpfulness in routine diagnostic tests for health care.

9.
Front Microbiol ; 13: 957901, 2022.
Article En | MEDLINE | ID: mdl-36188005

DNA methylation is an important mechanism involved in bacteria limiting foreign DNA acquisition, maintenance of mobile genetic elements, DNA mismatch repair, and gene expression. Changes in DNA methylation pattern are observed in bacteria under stress conditions, including exposure to antimicrobial compounds. These changes can result in transient and fast-appearing adaptive antibiotic resistance (AdR) phenotypes, e.g., strain overexpressing efflux pumps. DNA methylation can be related to DNA mutation rate, because it is involved in DNA mismatch repair systems and because methylated bases are well-known mutational hotspots. The AdR process can be the first important step in the selection of antibiotic-resistant strains, allowing the survival of the bacterial population until more efficient resistant mutants emerge. Epigenetic modifications can be investigated by third-generation sequencing platforms that allow us to simultaneously detect all the methylated bases along with the DNA sequencing. In this scenario, this sequencing technology enables the study of epigenetic modifications in link with antibiotic resistance and will help to investigate the relationship between methylation and mutation in the development of stable mechanisms of resistance.

10.
R Soc Open Sci ; 9(1): 210039, 2022 Jan.
Article En | MEDLINE | ID: mdl-35070338

Research on the second plague pandemic that swept over Europe from the fourteenth to nineteenth centuries mainly relies on the exegesis of contemporary texts and is prone to interpretive bias. By leveraging certain bioinformatic tools routinely used in biology, we developed a quantitative lexicography of 32 texts describing two major plague outbreaks, using contemporary plague-unrelated texts as negative controls. Nested, network and category analyses of a 207-word pan-lexicome, comprising overrepresented terms in plague-related texts, indicated that 'buboes' and 'carbuncles' are words that were significantly associated with the plague and signalled an ectoparasite-borne plague. Moreover, plague-related words were associated with the terms 'merchandise', 'movable', 'tatters', 'bed' and 'clothes'. Analysing ancient texts using the method reported in this paper can certify plague-related historical records and indicate the particularities of each plague outbreak, which can inform on the potential sources for the causative Yersinia pestis.

11.
Microb Pathog ; 157: 104972, 2021 Aug.
Article En | MEDLINE | ID: mdl-34029658

The microbiota is a hot topic of research in medical microbiology, boosted by culturomics and metagenomics, with unanticipated knowledge outputs in physiology and pathology. Knowledge of the microbiota in ancient populations may therefore be of prime interest in understanding factors shaping the coevolution of the microbiota and populations. Studies on ancient human microbiomes can help us understand how the community of microorganisms presents in the oral cavity and the gut was shaped during the evolution of our species and what environmental, social or cultural changes may have changed it. This review cumulates and summarizes the discoveries in the field of the ancient human microbiota, focusing on the remains used as samples and techniques used to handle and analyze them.


Metagenomics , Microbiota , Gastrointestinal Tract , Humans
12.
Pharmacol Res ; 161: 105288, 2020 11.
Article En | MEDLINE | ID: mdl-33160070

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.


Acetobacteraceae/immunology , Bacterial Outer Membrane Proteins/immunology , Immunity, Innate , Leishmania infantum/immunology , Leishmaniasis Vaccines/immunology , Macrophage Activation , Macrophages/microbiology , Macrophages/parasitology , Acetobacteraceae/genetics , Acetobacteraceae/metabolism , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cell Line , Cytokines/metabolism , Genetic Vectors , Host-Parasite Interactions , Leishmania infantum/growth & development , Leishmania infantum/ultrastructure , Leishmaniasis Vaccines/genetics , Leishmaniasis Vaccines/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , Phagocytosis , Phenotype , Reactive Oxygen Species/metabolism , Vaccines, DNA/immunology
13.
PLoS One ; 15(4): e0232171, 2020.
Article En | MEDLINE | ID: mdl-32324826

There is great concern regarding the rapid emergence and spread of drug-resistance in Plasmodium falciparum, the parasite responsible for the most severe form of human malaria. Parasite populations resistant to some or all the currently available antimalarial treatments are present in different world regions. Considering the need for novel and integrated approaches to control malaria, combinations of drugs were tested on P. falciparum. The primary focus was on doxycycline, an antibiotic that specifically targets the apicoplast of the parasite. In combination with doxycycline, three different drugs known to inhibit efflux pumps (verapamil, elacridar and ivermectin) were tested, with the assumption that they could increase the intracellular concentration of the antibiotic and consequently its efficacy against P. falciparum. We emphasize that elacridar is a third-generation ABC transporters inhibitor, never tested before on malaria parasites. In vitro experiments were performed on asexual stages of two strains of P. falciparum, chloroquine-sensitive (D10) and chloroquine-resistant (W2). Incubation times on asynchronous or synchronous cultures were 72h or 96h, respectively. The antiplasmodial effect (i.e. the IC50) was determined by measuring the activity of the parasite lactate dehydrogenase, while the interaction between drugs was determined through combination index (CI) analyses. Elacridar achieved an IC50 concentration comparable to that of ivermectin, approx. 10-fold lower than that of verapamil, the other tested ABC transporter inhibitor. CI results showed synergistic effect of verapamil plus doxycycline, which is coherent with the starting hypothesis, i.e. that ABC transporters represent potential targets, worth of further investigations, towards the development of companion molecules useful to enhance the efficacy of antimalarial drugs. At the same time, the observed antagonistic effect of doxycycline in combination with ivermectin or elacridar highlighted the importance of drug testing, to avoid the de-facto generation of a sub-dosage, a condition that facilitates the development of drug resistance.


Antimalarials/therapeutic use , Doxycycline/therapeutic use , Ivermectin/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Chloroquine/therapeutic use , Drug Resistance/drug effects , Drug Therapy, Combination/methods , Humans , Malaria, Falciparum/parasitology
14.
Malar J ; 18(1): 294, 2019 Aug 28.
Article En | MEDLINE | ID: mdl-31462239

BACKGROUND: Insecticides are still at the core of insect pest and vector control programmes. Several lines of evidence indicate that ABC transporters are involved in detoxification processes against insecticides, including permethrin and other pyrethroids. In particular, the ABCG4 gene, a member of the G subfamily, has consistently been shown to be up-regulated in response to insecticide treatments in the mosquito malaria vector Anopheles stephensi (both adults and larvae). METHODS: To verify the actual involvement of this transmembrane protein in the detoxification process of permethrin, bioassays on larvae of An. stephensi, combining the insecticide with a siRNA, specifically designed for the inhibition of ABCG4 gene expression were performed. Administration to larvae of the same siRNA, labeled with a fluorescent molecule, was effected to investigate the systemic distribution of the inhibitory RNA into the larval bodies. Based on siRNA results, similar experiments using antisense Vivo-Morpholinos (Vivo-MOs) were effected. These molecules, compared to siRNA, are expected to guarantee a higher stability in environmental conditions and in the insect gut, and present thus a higher potential for future in-field applications. RESULTS: Bioassays using two different concentrations of siRNA, associated with permethrin, led to an increase of larval mortality, compared with results with permethrin alone. These outcomes confirm that ABCG4 transporter plays a role in the detoxification process against the selected insecticide. Moreover, after fluorescent labelling, it was shown the systemic dissemination of siRNA in different body districts of An. stephensi larvae, which suggest a potential systemic effect of the molecule. At the same time, results of Vivo-MO experiments were congruent with those obtained using siRNA, thus confirming the potential of ABCG4 inhibition as a strategy to increase permethrin susceptibility in mosquitoes. For the first time, Vivo-MOs were administered in water to larvae, with evidence for a biological effect. CONCLUSIONS: Targeting ABCG4 gene for silencing through both techniques resulted in an increased pyrethroid efficacy. These results open the way toward the possibility to exploit ABCG4 inhibition in the context of integrated programmes for the control An. stephensi mosquitoes and malaria transmission.


Anopheles/genetics , Insecticide Resistance/genetics , Insecticides , Morpholinos/administration & dosage , Pyrethrins , RNA, Antisense/genetics , ATP Binding Cassette Transporter, Subfamily G/genetics , Animals , Biological Assay , Larva/genetics , Malaria/prevention & control , Morpholinos/genetics , Mosquito Control , Mosquito Vectors , RNA Interference , RNA, Small Interfering
15.
J Am Mosq Control Assoc ; 34(4): 311-314, 2018 12.
Article En | MEDLINE | ID: mdl-31442140

Detoxifying pathways of mosquitoes against the neem (Azadirachta indica) extracts are still unclear. The aim of the present study was to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters in this process in Anopheles stephensi, one of the main malaria vectors in southern Asia. Third-stage larvae of An. stephensi were fed with fish food alone or in combination with neem extract at 0.5%, 1%, 5%, and 10%. Six ABC-transporter genes from 3 different subfamilies (B, C, and G) were analyzed to assess their relative expression compared with controls. A bioassay was also performed to assess larval mortality rate at different concentrations and in combination with verapamil, an ABC-transporter inhibitor. No significant variation in the expression levels of any transporter belonging to the B, C, and G subfamilies was detected. Furthermore, the use of verapamil did not induce an increase in mortality at any of the tested neem extract concentrations, indicating that ABC transporters are not involved in the detoxification of neem extracts in An. stephensi larvae.


ATP-Binding Cassette Transporters/metabolism , Anopheles/metabolism , Azadirachta/chemistry , Insect Proteins/metabolism , Metabolic Detoxication, Phase I , Plant Extracts/chemistry , Animals , Anopheles/growth & development , Larva/metabolism
...