Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(35): 46191-46199, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39166740

ABSTRACT

The pursuit of high-performance thermoelectric materials is of paramount importance in addressing energy sustainability and environmental concerns. Here, we explore the multifaceted impact of sulfur passivation in the matrix of tellurium nanowires (TeNWs), encompassing environmental control, thermoelectric properties, and charge carrier mobility. In this study, we present the facile production of TeNWs using an aqueous solution synthesis approach. The synthesized TeNWs were subsequently subjected to surface modification involving sulfur moieties. Our findings demonstrate that sulfur passivation not only effectively safeguards the nanowires from environmental degradation but also significantly augments their thermoelectric properties. Notably, the highest recorded values were achieved at 560 K for passivated tellurium nanowires, exhibiting a Seebeck coefficient of 246 µV/K, an electrical conductivity of 14.2 S/cm, and power factors of 86.7 µW/m-K2. This strategy presents a promising avenue for the development of advanced thermoelectric materials for applications in energy harvesting, waste heat recovery, and sustainable energy conversion technologies.

2.
Small ; 20(1): e2305161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641192

ABSTRACT

Single-atom catalysts (SACs) are promising cathode materials for addressing issues faced by lithium-sulfur batteries. Considering the ample chemical space of SACs, high-throughput calculations are efficient strategies for their rational design. However, the high throughput calculations are impeded by the time-consuming determination of the decomposition barrier (Eb ) of Li2 S. In this study, the effects of bond formation and breakage on the kinetics of SAC-catalyzed Li2 S decomposition with g-C3 N4 as the substrate are clarified. Furthermore, a new efficient and easily-obtained descriptor Li─S─Li angle (ALi─S─Li ) of adsorbed Li2 S, different from the widely accepted thermodynamic data for predicting Eb , which breaks the well-known Brønsted-Evans-Polanyi relationship, is identified. Under the guidance of ALi─S─Li , several superior SACs with d- and p-block metal centers supported by g-C3 N4 are screened to accelerate the sulfur redox reaction and fix the soluble lithium polysulfides. The newly identified descriptor of ALi─S─Li can be extended to rationally design SACs for Na─S batteries. This study opens a new pathway for tuning the performance of SACs to catalyze the decomposition of X2 S (X = Li, Na, and K) and thus accelerate the design of SACs for alkaline-chalcogenide batteries.

3.
Infect Drug Resist ; 16: 7447-7454, 2023.
Article in English | MEDLINE | ID: mdl-38077300

ABSTRACT

Nocardiosis is mainly an opportunistic infection that affects immunosuppressed individuals, with the most common manifestation being the pulmonary infection and cerebral abscesses. Abdominal abscesses caused by Nocardia is rare in diabetes patients. Here, we report a rare case of abdominal abscesses caused by Nocardia farcinica (N. farcinica) in a 56-year-old man with poorly controlled type 2 diabetes and prolonged use of corticosteroids for the treatment of secondary adrenal insufficiency. Abdominal CT suggested abdominal abscesses, and the culture of the abscess puncture fluid identified it as N. farcinica by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Treatment with a combination of trimethoprim-sulfamethoxazole (TMP-SMX) and imipenem/cilastatin (IPM/CS), along with surgical drainage and reduction in corticosteroid dosage, achieved successful outcomes in treating disseminated abdominal abscesses. Immunocompromised patients with unexplained fever, abdominal pain, and abdominal abscess should be suspected of Nocardia infection.

4.
Hum Vaccin Immunother ; 19(3): 2293299, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100550

ABSTRACT

Cancer-testis antigen CT23 is a class of tumor-associated antigens (TAA) characterized by restricted expression in male germ cells and a variety of tumor tissues. Numerous studies have shown that CT23 is closely related to tumor cell viability, proliferation, metastasis and invasion. CT23 is immunogenic and can cause specific immune response in tumor patients. Therefore, it is considered to be one of the best target antigens for designing therapeutic tumor vaccines and T-cell-mediated tumor immunotherapy. In this study, we initially obtained seven HLA-A*0201-restricted CT23 epitope candidate peptides through the T cell epitope prediction program. Subsequently, a T2 cell binding assay revealed the potential binding of all candidate peptides with HLA-A2 molecules. Notably, peptide P7 (ALLVLCYSI) exhibited the highest affinity, as evidenced by a fluorescence index (FI) of 2.19. Dendritic cells (DCs) loaded with CT23 candidate peptide can stimulate CD8+T cell activation and proliferation, and compared with other candidate peptides, candidate peptide P7 is superior. The cytotoxic T lymphocytes (CTLs) stimulated by the peptide P7 had killing effect on tumor cells (HLA-A*0201+, CT23+), but no killing effect on tumor cells (HLA-A*0201-, CT23+). The CTLs induced by the peptide P7 also had a specific killing effect on T2 cells bearing the peptide P7. In summary, our findings suggest that the CT23 peptide P7 (ALLVLCYSI) can induce immune responses and holds potential for tumor-specific CTL therapy.


Subject(s)
Neoplasms , Testis , Humans , Male , Cell Line, Tumor , HLA-A2 Antigen , Peptides , T-Lymphocytes, Cytotoxic , Antigens, Neoplasm , Epitopes, T-Lymphocyte , Neoplasms/therapy , Neoplasms/metabolism
5.
Phys Chem Chem Phys ; 25(37): 25761-25771, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37724050

ABSTRACT

Electrocatalysis is involved in many energy storage and conversion devices, triggering research and development of electrocatalysts, particularly single-atom catalysts (SACs). The introduction of the strain effect to enhance the performance of SACs has drawn ever-increasing research attention, which can tailor the local atomic and electronic structure of active sites. Herein, via high throughput calculations, we have explored the effects of strain on the catalytic performance of SACs with MN4 configuration for electrochemical reactions of N2 and O2 by incorporating d- and p-block single metal atoms into BN nanocages (BNNCs). The calculations demonstrate that Os@BNNC exhibits the highest catalytic activity for the nitrogen reduction reaction (NRR) with a limiting potential of -0.29 V. Co@BNNC can serve as an excellent bifunctional SAC for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), with overpotentials of 0.32 and 0.37 V, respectively. In particular, Sn@BNNC with a p-block metal as the active center is a competitive SAC for the ORR with an overpotential of 0.64 V. More interestingly, the NRR and ORR performances of SACs supported by BNNCs have a close correlation with the structural and electronic properties of adsorbed N2 and O2 molecules, which proves that controlling the adsorption energy of N2 and O2 molecules is crucial to improving the catalytic activity of BNNC. The current investigation opens up an avenue for designing SACs embedded in nanocages possessing intrinsically curved surfaces for electrochemical reactions.

6.
Sci Bull (Beijing) ; 68(18): 2106-2114, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37599175

ABSTRACT

Rare but critical bleeding events in primary immune thrombocytopenia (ITP) present life-threatening complications in patients with ITP, which severely affect their prognosis, quality of life, and treatment decisions. Although several studies have investigated the risk factors related to critical bleeding in ITP, large sample size data, consistent definitions, large-scale multicenter findings, and prediction models for critical bleeding events in patients with ITP are unavailable. For the first time, in this study, we applied the newly proposed critical ITP bleeding criteria by the International Society on Thrombosis and Hemostasis for large sample size data and developed the first machine learning (ML)-based online application for predict critical ITP bleeding. In this research, we developed and externally tested an ML-based model for determining the risk of critical bleeding events in patients with ITP using large multicenter data across China. Retrospective data from 8 medical centers across the country were obtained for model development and prospectively tested in 39 medical centers across the country over a year. This system exhibited good predictive capabilities for training, validation, and test datasets. This convenient web-based tool based on a novel algorithm can rapidly identify the bleeding risk profile of patients with ITP and facilitate clinical decision-making and reduce the occurrence of adversities.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Purpura, Thrombocytopenic, Idiopathic/complications , Quality of Life , Retrospective Studies , Prospective Studies , Hemorrhage/diagnosis , Thrombocytopenia/complications
7.
Plant Signal Behav ; 18(1): 2233179, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37431740

ABSTRACT

Biomineralization in plant roots refers to the process of cell-induced self-assembly to form nanostructures on the root surface. Silicon (Si) is the second most abundant element in soils, and beneficial to plant growth. Meanwhile, silicon is shown to participate in the process of biomineralization, which is useful for improving mechanical strength and alleviating biotic and abiotic stress, for example silicic acid polymerizes to form amorphous silica (SiO2-nH2O) in the process of growing to resist fungi and environmental stress. This process alters physical and chemical properties of cell wall. However, the mechanistic basis of this process remains unclear. Aluminum toxicity is a major constraint affecting plant performance in acid soil. This paper summarizes recent research advances in the field of plant biomineralization and describes the effects of silicon biomineralization on plant aluminum tolerance and its adaptive significance, using aluminum toxicity as a case study.


Subject(s)
Silicon Dioxide , Silicon , Silicon/pharmacology , Aluminum/toxicity , Biomineralization , Cell Cycle , Soil
8.
Curr Med Sci ; 42(5): 1055-1065, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36260267

ABSTRACT

OBJECTIVE: Glioblastoma multiforme (GBM), the most malignant intracranial neoplasm, is associated with a high mortality and recurrence rate due to the aggressive nature and heterogeneity of the tumor. Some of the molecular markers involved in the tumorigenesis of GBM are essential in prognosis, diagnosis, and treatment. Due to the limitations of therapeutic effects, this study aims to explore novel biomarkers with prognostic value and to provide new insights into therapeutic targets. METHODS: The expression profile of mRNAs in GBM was detected by RNA-sequencing, and differentially expressed genes were identified by integrating the data from RNA-seq results and the GEPIA2 database. Of the total 40 hub genes, FN1, P4HB, and PPIB showed prognostic significance based on both GEPIA2 and CGGA databases. The validation of FN1, P4HB, and PPIB expression by qPCR and correlation analysis with clinicopathological features were performed in 41 GBM tissues from our institution. RESULTS: Kaplan-Meier analysis revealed that FN1 and P4HB expressions levels were related to the overall survival (OS) of GBM patients (P<0.05). Multivariate analysis showed that FN1 overexpression (HR=9.199, P=0.002) was an independent and unfavorable prognostic factor for GBM patients. The median survival time was 8.5 months and 21 months for high and low expressions of FN1, respectively. CONCLUSION: It was suggested that FN1 could be an ideal target for prognosis and a potential therapeutic target in GBM.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Fibronectins/genetics , Prognosis , Biomarkers , RNA
9.
Small ; 18(41): e2203340, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36089653

ABSTRACT

Developing low-cost and efficient oxygen evolution electrocatalysts is key to decarbonization. A facile, surfactant-free, and gram-level biomass-assisted fast heating and cooling synthesis method is reported for synthesizing a series of carbon-encapsulated dense and uniform FeNi nanoalloys with a single-phase face-centered-cubic solid-solution crystalline structure and an average particle size of sub-5 nm. This method also enables precise control of both size and composition. Electrochemical measurements show that among Fex Ni(1- x ) nanoalloys, Fe0.5 Ni0.5 has the best performance. Density functional theory calculations support the experimental findings and reveal that the optimally positioned d-band center of O-covered Fe0.5 Ni0.5 renders a half-filled antibonding state, resulting in moderate binding energies of key reaction intermediates. By increasing the total metal content from 25 to 60 wt%, the 60% Fe0.5 Ni0.5 /40% C shows an extraordinarily low overpotential of 219 mV at 10 mA cm-2 with a small Tafel slope of 23.2 mV dec-1 for the oxygen evolution reaction, which are much lower than most other FeNi-based electrocatalysts and even the state-of-the-art RuO2 . It also shows robust durability in an alkaline environment for at least 50 h. The gram-level fast heating and cooling synthesis method is extendable to a wide range of binary, ternary, quaternary nanoalloys, as well as quinary and denary high-entropy-alloy nanoparticles.

10.
Life (Basel) ; 12(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36143437

ABSTRACT

Cadmium is one of the most toxic heavy metals and can be easily absorbed by plants, affecting root growth. Root border cells (RBCs), that are located in the periphery of the root cap and originate from the root cap meristem, represent a convenient tool to study the toxic effects of Cd on root performance. In this work, vegetables with contrasting types of root apical meristem (RAM) organizations were used. The open RAM organizations included pea and cucumber, and the closed RAM organizations included tomato, chili, and eggplant. The number of RBCs were significantly higher in the species possessing open RAM organization: pea (11,330 cells per root) > cucumber (8200) > tomato (2480) > eggplant (1830) > chili (1320). The same trend was observed for cell viability: pea (61%) > cucumber (59%) > tomato (49%) > eggplant (44%) > chili (42%). Pea and cucumber had higher relative radicle elongation rates and a lower increase in stress-induced accumulation of malondialdehyde (MDA), making them more resistant to Cd stress than the vegetables with close RAM organization. Under Cd treatment, the number and viability of RBCs in vegetables with both types of RAM organization were significantly decreased. However, the decreasing ratio of the number and viability of RBCs in pea and cucumber was higher than in tomato, chili, and eggplant. Taken together, the plants with the open-type RAM are more tolerant to Cd, and it can be speculated that the cadmium tolerance of the vegetables may be correlated with the number and viability of RBCs in response to cadmium stress.

11.
Front Oncol ; 12: 873639, 2022.
Article in English | MEDLINE | ID: mdl-35992806

ABSTRACT

Objective: The study evaluated the efficacy of combined epigenetic drugs of decitabine (DAC), valproic acid (VPA), and trichostatin A (TSA) on immunotherapy against glioma. Methods: The expression and prognosis of MAGE-D4 in glioma were analyzed online, and the expression of MAGE-D4 and HLA-A2 in glioma induced by epigenetic drugs was detected by qRT-PCR, Western blot, and flow cytometry. The methylation status of the MAGE-D4 promoter was determined by pyrosequencing. An HLA-A2 restricted MAGE-D4 peptide was predicted and synthesized. An affinity assay and a peptide/HLA complex stability assay were performed to determine the affinity between peptide and HLA. CCK8 assay, CFSE assay, ELISA and ELISPOT were performed to detect the function of MAGE-D4 peptide-specific T cells. Flow cytometry, ELISA, and cytotoxicity assays were used to detect the cytotoxicity effect of MAGE-D4 peptide-specific T cells combined with epigenetic drugs against glioma in vitro. Finally, the glioma-loaded mouse model was applied to test the inhibitory effect of specific T cells on gliomas in vivo. Results: MAGE-D4 was highly expressed in glioma and correlated with poor prognosis. Glioma cells could be induced to express MAGE-D4 and HLA-A2 by epigenetic drugs. MAGE-D4-associated peptides were found that induce DCs to stimulate the highest T-cell activities of proliferation, IL-2 excretion, and IFN-γ secretion. MAGE-D4 peptide-specific T cells treated with TSA only or combining TSA and DAC had the most cytotoxicity effect, and its cytotoxicity effect on glioma cells decreased significantly after HLA blocking. In vivo experiments also confirmed that MAGE-D4-specific T cells inhibit TSA-treated glioma. Conclusion: MAGE-D4 is highly expressed in glioma and correlated with the prognosis of glioma. The novel MAGE-D4 peptide identified was capable of inducing MAGE-D4-specific T cells that can effectively inhibit glioma growth, and the epigenetic drug application can enhance this inhibition.

12.
Curr Med Sci ; 42(4): 803-816, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35819657

ABSTRACT

OBJECTIVE: Cancer/testis antigen FMR1NB is aberrantly expressed in various types of cancer, but not in normal tissues except for testis. This study aimed to investigate the expression and functional role of FMR1NB in glioma. METHODS: The expression of FMR1NB mRNA and protein was determined using RT-PCR and immunohistochemistry, respectively, in glioma specimens from 83 patients at follow-up. The effects of siRNA-mediated FMR1NB silencing on malignant biological behaviors were evaluated in glioma cell lines A172 and U251. RESULTS: FMR1NB mRNA and protein expression was detected in 58.8% (77/131) and 46.34% (57/123) of glioma tissues, respectively. FMR1NB protein was positively correlated with World Health Organization grade and found to be an independent prognostic marker for poor outcome. Knockdown of FMR1NB induced apoptosis and suppressed proliferation, adhesion, migration, and invasion by modulating the expression of cyclin A, CDK2, caspase-3, E-cadherin, and N-cadherin in A172 and U251 cells. CONCLUSION: Our findings suggest that FMR1NB contributes to the tumorigenesis of glioma cells and may represent a potential prognostic biomarker and an attractive therapeutic target in glioma.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Glioma/genetics , Glioma/therapy , Humans , Male , Prognosis , RNA, Messenger/genetics
13.
ACS Omega ; 7(23): 19794-19803, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35722000

ABSTRACT

Atomically dispersed M-N-C has been considered an effective catalyst for various electrochemical reactions such as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which faces the challenge of increasing metal load while simultaneously maintaining catalytic performance. Herein, we put forward a strategy for boosting catalytic performances of a single Cu atom coordinated with three N atoms (CuN3) for both ORR and OER by increasing the density of connected CuN3 moieties. Our calculations first show that a single CuN3 moiety exhibiting no catalytic performance for ORR and OER can be activated by increasing the density of metal centers, which weakens the binding affinity to *OH due to the lowered d-band center of the metal atoms. These findings stimulate the further theoretical design of a two-dimensional compound of C3N3Cu with a high concentration of homogeneously distributed CuN3 moieties serving as bifunctional active sites, which demonstrates efficient catalytic performance for both ORR and OER as reflected by the overpotentials of 0.71 and 0.43 V, respectively. This work opens a new avenue for designing effective single-atom catalysts with potential applications as energy storage and conversion devices possessing high density of metal centers independent of the doping strategy and defect engineering, which deserves experimental investigation in the future.

14.
Curr Med Sci ; 42(3): 584-596, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35678909

ABSTRACT

OBJECTIVE: Glioblastoma (GBM) is the most common, invasive, and malignant primary brain tumor with a poor prognosis and high recurrence rate. It's known that some microRNAs (miRNAs) which are associated with tumorigenesis and progression can be considered as prognostic and therapeutic targets in tumors including GBM. This study aims to highlight the potential role of the core miRNAs in GBM and their potential use as a prognostic and therapeutic biomarker. METHODS: Differentially expressed miRNAs (DEmiRNAs) were identified in GBM by integrating miRNA-sequencing results and a GBM microarray dataset from the Gene Expression Omnibus (GEO) database through bioinformatics tools. The dysregulated miRNAs were identified by survival analysis through Chinese Glioma Genome Atlas (CGGA). Target genes of the dysregulated miRNAs were predicted on MiRWalk and miRTarBase database. TAM2.0 database, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were used to analyze the function of the dysregulated miRNAs. Subsequently, protein-protein interaction (PPI) network analysis was used to identify the top 20 hub targets of the up-regulated and down-regulated miRNAs, respectively. Then, core miRNAs in GBM were identified by constructing dysregulated miRNA-differentially expressed hub gene networks. Validation of the core miRNAs expression was detected in 41 GBM tissues compared to 8 normal brain tissues. Furthermore, the potential biomarkers were identified by clinical correlation analysis and survival analysis. RESULTS: Totally, 68 intersecting DEmiRNAs were identified, 40 of which were upregulated and the other 28 miRNAs were downregulated. Two upregulated and 4 downregulated miRNAs showed prognostic significance. Most differentially expressed hub genes were regulated by the miR-28-5p and miR-1224-5p, which were respectively upregulated and downregulated in GBM. The correlation between miR-1224-5p level and recurrence was statistically significant (P=0.011). Survival analysis showed that high miR-28-5p level and high miR-1224-5p level were both associated with better prognosis. Moreover, high miR-1224-5p level was an independent prognosis factor for GBM patients according to the cox regression analysis. CONCLUSION: MiRNA-1224-5p could be a potential target for the prognosis and treatment in GBM.


Subject(s)
Glioblastoma , MicroRNAs , Biomarkers , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis
15.
Bosn J Basic Med Sci ; 22(4): 540-552, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35150479

ABSTRACT

Alzheimer's disease (AD) ranks as the leading cause of dementia. MicroRNA (miR)-212-3p has been identified to exert neuroprotective effects on brain disorders. The current study analyzed the protective role of miR-212-3p in AD rats via regulating the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/Caspase-1 signaling pathway. The AD rat model was established via injection of amyloid-ß 1-42 (Aß1-42), followed by the Morris water maze test. The morphology and functions of neurons were observed. Furthermore, miR-212-3p, NLRP3, cleaved Caspase-1, gasdermin D N-terminus, interleukin (IL)-1ß and IL-18 expressions were measured. H19-7 cells were treated with Aß1-42 to establish the AD cell model, followed by an assessment of cell viability and pyroptosis. Downstream targets of miR-212-3p and specificity protein 1 (SP1), as well as beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) were predicted by databases and testified using dual-luciferase and chromatin immunoprecipitation assays. miR-212-3p was weakly expressed in AD rats. miR-212-3p overexpression was linked to improved learning and memory capacities of AD rats and reduced neuronal pyroptosis linked to neuroinflammation attenuation. In vitro, miR-212-3p improved viability and suppressed pyroptosis of neurons via inhibiting NLRP3/Caspase-1. Overall, miR-212-3p inhibited SP1 expression to block BACE1-induced activation of NLRP3/Caspase-1, thereby attenuating neuroinflammation of AD rats.


Subject(s)
Alzheimer Disease , MicroRNAs , Signal Transduction , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Caspase 1 , Caspases/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases/metabolism , Rats
16.
Phys Chem Chem Phys ; 24(1): 180-190, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34878473

ABSTRACT

Lithium-sulfur battery is one of the most promising applicants for the next generation of energy storage devices whose commercial applications are impeded by the key issue of the shuttle effect. To overcome this obstacle, various two-dimensional (2D) carbon-based metal-free compounds have been proposed to serve as anchoring materials for immobilizing soluble lithium polysulfides (LiPs), which however suffer from low electronic conductivity implying unsatisfactory performance for catalyzing sulfur redox. Therefore, we have predicted metallic C5N monolayers, possessing hexagonal (H) and orthorhombic (O) phases, exhibiting excellent performance for suppressing the shuttle effect. First-principles simulations demonstrate that O-C5N could serve as a bifunctional anchoring material due to its strong adsorption capability to LiPs and excellent catalytic performance for sulfur redox with active sites from both basal plane and zigzag edges. Furthermore, the rate of Li2S oxidation over O-C5N is fast due to the low energy barrier of 0.93 eV for Li2S decomposition. While for H-C5N, only N atoms located at the armchair edges can efficiently trap LiPs and boost the formation and dissociation of Li2S during discharge and charge processes, respectively. The current work opens an avenue of designing 2D metallic carbon-based anchoring materials for lithium-sulfur batteries, which deserves further experimental research efforts.

17.
World J Clin Cases ; 9(33): 10273-10278, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34904099

ABSTRACT

BACKGROUND: Capillary leak syndrome (CLS) is characterized by the leakage of large amounts of fluid and plasma proteins into the interstitial space, resulting in hypoalbuminemia, hypovolemic shock, elevated blood concentration, systemic progressive edema, and multiple serosal cavity effusion. Clinical syndromes such as cavity effusion pose a grave threat to the life and health of the patient. CASE SUMMARY: A 58-year-old female patient was admitted to the hospital after being in a coma for 6 h following accidental ingestion of a pesticide. She was treated with phencyclidine hydrochloride and pralidoxime iodide for detoxification, mechanical ventilation to maintain oxygen supply, continuous renal replacement therapy to maintain the internal environment, and hemoperfusion to promote the excretion of toxins. She also received a transfusion of red blood cells and massive fluid resuscitation. However, her blood pressure was not maintained. The patient was diagnosed with CLS due to pesticide poisoning. Oxygenation was difficult to maintain under full ventilator support; therefore, veno-venous-extracorporeal membrane oxygenation (VV-ECMO) treatment was given 13 h after admission. Her oxygenation level improved, but a large amount of ascites and pleural effusion soon became apparent. We continued drainage with an indwelling drainage tube, and the ECMO flow stabilized. The leakage gradually decreased, and ECMO was discontinued 3 d later. On the 6th day, the patient recovered from unconsciousness, but on gastroscopic evaluation, severe erosions were found in her entire stomach. With the family's consent, treatment was stopped, and the patient was discharged from the hospital on the 7th day. CONCLUSION: ECMO, liquid resuscitation and management, and improvement in plasma colloidal osmotic pressure, circulation, and tissue oxygen supply are crucial in treating CLS.

18.
Adv Sci (Weinh) ; 8(23): e2102809, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34672422

ABSTRACT

The sulfur redox kinetics critically matters to superior lithium-sulfur (Li-S) batteries, for which single atom catalysts (SACs) take effect on promoting Li2 S redox process and mitigating the shuttle behavior of lithium polysulfide (LiPs). However, conventional trial-and-error strategy significantly slows down the development of SACs in Li-S batteries. Here, the Li2 S oxidation processes over MN4 @G catalysts are fully explored and energy barrier of Li2 S decomposition (Eb ) is identified to correlate strongly with three parameters of energy difference between initial and final states of Li2 S decomposition, reaction energy of Li2 S oxidation and LiS bond strength. These three parameters can serve as efficient descriptors by which two excellent SACs of MoN4 @G and WN4 @G are screened which give rise to Eb values of 0.58 and 0.55 eV, respectively, outperforming other analogues in adsorbing LiPs and accelerating the redox kinetics of Li2 S. This method can be extended to a wider range of SACs by coupling MN4 moiety with heterostructures and heteroatoms beyond N where WN4 @G/TiS2 heterointerface is predicted to exhibit enhanced catalytic performance for Li2 S decomposition with Eb of 0.40 eV. This work will help accelerate the process of designing a wider range of efficient catalysts in Li-S batteries and even beyond, e.g. alkali-ion-Chalcogen batteries.

19.
Am J Transl Res ; 13(7): 7591-7609, 2021.
Article in English | MEDLINE | ID: mdl-34377237

ABSTRACT

OBJECTIVE: To evaluate the efficacy of combined epigenetic drugs of decitabine (DAC), valproic acid (VPA) and trichostatin A (TSA) on immunotherapy with a murine model of hepatocellular carcinoma (HCC). METHODS: Dendritic cells (DCs) transduced with recombinant lentivirus expressing a cancer-testis antigen, acrosin binding protein (ACRBP), are referred to as DC/ACRBP. CD8+ T cells were harvested from spleens of C57BL/6 mice and activated by DC/ACRBP. Cytotoxicity of DC/ACRBP-activated T cells was analyzed by cytotoxicity and murine xenograft assays. RESULTS: Cytotoxicity assay results revealed that DC/ACRBP-activated T cells exhibited the highest cytotoxicity against HCC cells pre-treated with triple drugs (DAC+VPA+TSA) compared with dual drugs (DAC+VPA and DAC+TSA) and single drug (DAC, VPA and TSA) respectively. Analyses of RT-PCR and immunoblotting demonstrated that the highest ACRBP expression of HCC cells was induced by the triple drugs compared with the single and dual drugs. These results indicated that DC/ACRBP-activated T cells might be ACRBP-specific lymphocytes, and the augmented cytotoxicity may be dependent on the upregulation of ACRBP expression. These assumptions were further confirmed by xenograft tumor assay. Tumor cells of mice administrated with the triple drugs exhibited increased ACRBP expression compared with those of mice without administration. As expected, DC/ACRBP-activated T cells adopted by mice injected with the triple drugs, compared with those adopted by mice without injection, remarkably impeded growth and facilitated apoptosis of tumor cells. CONCLUSION: These data suggested that combined treatment with DAC, VPA and TSA may enhance the anti-tumor efficacy of ACRBP-specific T cells by upregulating ACRBP expression in HCC.

20.
ACS Appl Mater Interfaces ; 12(45): 50505-50515, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33136381

ABSTRACT

As metal-free carbon based catalysts, boron (B)-doped carbonaceous materials have proved to exhibit superior catalytic performance toward nitrogen reduction reaction. However, this strategy of heteroatom doping encounters the synthesis challenges of precise control of the doping level and homogeneous distribution of the dopants, and in particular, these materials cannot be utilized in electrochemical N2 reduction because of poor electrical conductivity. Accordingly, via first-principles calculations, we here predicted two stable two-dimensional crystalline compounds: BC6N2 and BC4N, which have small band gaps and uniform distribution of NRR active sp2-B species and holey structures. Between them, the BC6N2 monolayer originally possesses nice NRR activity with limiting potentials of -0.47 V. In the proton-rich acid medium, the electronic properties of these two B-C-N monolayers could be further tailored to exhibit a metallic characteristic by H pre-adsorption. This drastically improves the conductivity and enhances their NRR performances as reflected by the limiting potentials of -0.15, -0.34, and -0.34 V for BC6N2 via enzymatic, distal, and alternating mechanisms, respectively. Besides, NRR on BC4N through enzymatic mechanism proceeds as the limiting potential moderated from -1.20 to -0.90 V. More than that, the competing hydrogen evolution reaction can be effectively suppressed. The current investigation opens an avenue of designing a 2D crystalline phase of MFC catalysts independent of heteroatom doping and gives insightful views of surface functionalization as an impactful strategy to improve the electrocatalytic activity of metal-free catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL