Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 280(Pt 2): 135799, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307484

ABSTRACT

The long-term presence of pharmaceutical pollution in water bodies has raised public awareness. Nanocellulose is often used in adsorption to remove pollutants from wastewater since it is an abundant, green and sustainable material. This paper offers an extensive overview of the recent works reporting the potential of nanocellulose-based adsorbents to treat pharmaceutical wastewater. This study distinguishes itself by not only summarizing recent research findings but also critically integrating discussions on the improvements in nanocellulose production and sorts of alterations based on the type of pharmaceutical contaminants. Commonly, charged, or hydrophobic characteristics are introduced onto nanocellulose surfaces to accelerate and enhance the removal of pharmaceutical compounds. Although adsorbents based on nanocellulose have considerable potential, several significant challenges impede their practical application, particularly concerning cost and scalability. Large-scale synthesis of nanocellulose is technically challenging and expensive, which prevents its widespread use in wastewater treatment plants. Continued innovation in this area could lead to breakthroughs in the practical application of nanocellulose as a superior adsorbent. The prospects of utilization of nanocellulose are explained, providing a sustainable way to address the existing restriction and maximize the application of the modified nanocellulose in the field of pharmaceutical pollutants removal.

2.
Int J Biol Macromol ; 277(Pt 3): 134451, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102907

ABSTRACT

The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.


Subject(s)
Cellulose , Wastewater , Water Purification , Cellulose/chemistry , Wastewater/chemistry , Water Purification/methods , Adsorption , Sasa/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Nanoparticles/chemistry , Biodegradation, Environmental
3.
Int J Biol Macromol ; 277(Pt 1): 134165, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059537

ABSTRACT

In recent years, there has been an increase in research devoted to the advancement of cellulose and nanocellulose-based materials, which are advantageous due to their renewable nature, strength, rigidity, and environmental friendliness. This exploration complies with the fundamental tenets of environmental stewardship and sustainability. An area of industrial biotechnology where cellulosic agricultural residues have the potential to be economically utilized is through the conversion of such residues; sugarcane bagasse is currently leading this charge. SCB, a plentiful fibrous byproduct produced during the sugarcane industry's operations, has historically been utilized in various sectors, including producing paper, animal feed, enzymes, biofuel conversion, and biomedical applications. Significantly, SCB comprises a considerable amount of cellulose, approximately 40 % to 50 %, rendering it a valuable source of cellulose fibre for fabricating cellulose nanocrystals. This review sheds light on the significant advances in surface modification techniques, encompassing physical, chemical, and biological treatments, that enhance sugarcane bagasse fibres' adsorption capacity and selectivity. Furthermore, the paper investigates the specific advancements related to the augmentation of sugarcane bagasse fibres' efficacy in adsorbing a wide range of pollutants. These pollutants span a spectrum that includes heavy metals, dyes, organic pollutants, and emerging contaminants. The discussion provides a comprehensive overview of the targeted removal processes facilitated by applying modified fibres. The unique structural and chemical properties inherent in sugarcane bagasse fibres and their widespread availability position them as highly suitable adsorbents for various pollutants. This convergence of attributes underscores the potential of sugarcane bagasse fibres in addressing environmental challenges and promoting sustainable solutions across multiple industries.


Subject(s)
Cellulose , Saccharum , Saccharum/chemistry , Cellulose/chemistry , Adsorption , Biotechnology/methods
5.
Int J Biol Macromol ; 253(Pt 2): 126501, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678687

ABSTRACT

Aspirin is a prevalent over-the-counter medicine that has been categorized as an emerging contaminant due to its danger to both living things and the environment. This work presents chitosan modified with spent tea waste extract (STWE) via the wet impregnation method as an adsorbent for the enhanced removal of aspirin in a fixed-bed column. The adsorbent (named chitosan-STWE) was successfully synthesized and exhibited a low crystallinity structure, good stability against thermal and acidic conditions, as depicted by HNMR, XRD, TGA, and the dissolution rate of the adsorbent. The adsorption column study reveals that increasing bed height (up to 6 cm) increases the percentage of aspirin removal (up to 40.8 %). Increasing aspirin concentration enhances the amount of aspirin that comes into contact with the chitosan-STWE adsorbent, thereby increasing the adsorption capacity. On the other hand, higher flow rates result in shorter contact times between the adsorbent and adsorbates, which lowers the quantity of aspirin adsorbed. The experimental data are in accordance with the values generated by the Thomas and Yoon-Nelson models, with the maximum adsorption capacity of 61.7 mg/g. The chitosan-STWE adsorbent was determined to be non-toxic, thus safe to be used in wastewater treatment applications.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Adsorption , Chitosan/chemistry , Aspirin , Water Pollutants, Chemical/chemistry , Water Purification/methods , Tea
6.
Glob Chall ; 7(8): 2300047, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37635702

ABSTRACT

Microplastic pollution has adversely affected the aquatic ecosystem, living creatures, and human health. Several studies in Malaysia have provided baseline information on the existence of microplastics in surface water, ingestion by marine life and sediment. Also, humans are exposed to microplastic due to consumption of contaminated abiotic and biotic products, such as processed seafood. Nonetheless, knowledge is still scarce among Malaysian on the potential remediation and pollution management of microplastics, which poses a significant challenge to preserve a good environmental status. Green technologies also other alternative to mitigate the contamination of microplastics for sustainable future. Hence, this review aims to provide an overview of microplastic's occurrence, fate, and implications in Malaysia's aquatic environment. Detection of microplastics from the water surface, ingestion by aquatics, and sediment samples are highlighted. Available different treatment processes toward microplastic remediation are also discussed. Additionally, the potential challenges, current perspective for plastic management in Malaysia, as well as green strategies for reducing microplastic contamination are also put forward. The goal of this work is to improve the understanding of the seriousness of microplastic contamination in aquatic environments, thus encouraging key concerns that need to be investigated further.

7.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37513835

ABSTRACT

Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.

8.
Gels ; 9(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36975676

ABSTRACT

A key element in ensuring successful immunization is the efficient delivery of vaccines. However, poor immunogenicity and adverse inflammatory immunogenic reactions make the establishment of an efficient vaccine delivery method a challenging task. The delivery of vaccines has been performed via a variety of delivery methods, including natural-polymer-based carriers that are relatively biocompatible and have low toxicity. The incorporation of adjuvants or antigens into biomaterial-based immunizations has demonstrated better immune response than formulations that just contain the antigen. This system may enable antigen-mediated immunogenicity and shelter and transport the cargo vaccine or antigen to the appropriate target organ. In this regard, this work reviews the recent applications of natural polymer composites from different sources, such as animals, plants, and microbes, in vaccine delivery systems.

9.
Environ Sci Pollut Res Int ; 30(60): 125048-125065, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36795217

ABSTRACT

This study investigates the feasibility of spent tea waste extract (STWE) as a green modifying agent for the modification of chitosan adsorbent towards aspirin removal. Response surface methodology based on Box-Behnken design was employed to find the optimal synthesis parameters (chitosan dosage, spent tea waste concentration, and impregnation time) for aspirin removal. The results revealed that the optimum conditions for preparing chitotea with 84.65% aspirin removal were 2.89 g of chitosan, 18.95 mg/mL of STWE, and 20.72 h of impregnation time. The surface chemistry and characteristics of chitosan were successfully altered and improved by STWE, as evidenced by FESEM, EDX, BET, and FTIR analysis. The adsorption data were best fitted to pseudo 2nd order, followed by chemisorption mechanisms. The maximum adsorption capacity of chitotea was 157.24 mg/g, as fitted by Langmuir, which is impressive for a green adsorbent with a simple synthesis method. Thermodynamic studies demonstrated the endothermic nature of aspirin adsorption onto chitotea.


Subject(s)
Chitosan , Water Pollutants, Chemical , Aspirin/analysis , Thermodynamics , Tea , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
10.
Gels ; 9(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36826291

ABSTRACT

Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication's adverse effects on neighboring organs or tissues, and controlling the medication's release to stop the cycle of over- and under-dosing, the incorporation of Fe3O4 magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers' origins.

11.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267697

ABSTRACT

There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. This review article uniquely highlights the use of green composites from natural fiber, particularly with regard to the development and characterization of chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites. Natural fiber composites have a number of advantages such as durability, low cost, low weight, high specific strength, non-abrasiveness, equitably good mechanical properties, environmental friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges, film, and porous membrane. There are different processing methods in the preparation of chitosan composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying, layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based composites possess high thermal stability, as well as good chemical and physical properties. In these regards, chitosan-based "green" composites have wide applicability and potential in the industry of biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.

12.
Environ Sci Pollut Res Int ; 28(11): 13842-13860, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33196996

ABSTRACT

The anthropogenic emission of carbon dioxide (CO2) into the atmosphere is recognized as the main contributor to global climate change. To date, scientists have developed various strategies, including CO2 utilization technologies, to reduce global carbon emissions. This paper presents the global scientific landscape of the CO2 utilization research from 1995 to 2019 based on a bibliometric analysis of 1875 publications extracted from Web of Science. The findings indicate a major increase in the number of publications and citations received from 2015 to 2019, denoting a fast-emerging research trend. The dynamics of global CO2 utilization research is partly driven by China's policies and research funding to promote low-carbon economic development. Applied Energy is recognized as a core journal in this research topic. The utilization of CO2 is a multidisciplinary topic that has progressed by multidimensional collaborations at the country and organizations levels, while the formation of co-authorship networks at the individual level is mostly influenced by the authors' affiliations. Keyword co-occurrence analysis reveals a rapid evolution in the CO2 utilization strategies from chemical fixation in carbonates and epoxides to pilot-scale testing of power-to-gas technologies in Europe and the USA. The development of efficient power-to-fuel technologies and biological utilization routes (using microalgae and bacteria) will probably be the next research priorities in CO2 utilization research.


Subject(s)
Atmosphere , Carbon Dioxide , Bibliometrics , Carbon Dioxide/analysis , Climate Change , Europe
13.
Environ Sci Pollut Res Int ; 27(8): 7757-7784, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32020458

ABSTRACT

The rapidly increasing generation of municipal solid waste (MSW) threatens the environmental integrity and well-being of humans at a global level. Incineration is regarded as a technically sound technology for the management of MSW. However, the effective management of the municipal solid waste incineration (MSWI) ashes remains a challenge. This article presents the global dynamics of MSWI ashes research from 1994 to 2018 based on a bibliometric analysis of 1810 publications (research articles and conference proceedings) extracted from the Web of Science database, followed by a comprehensive summary on the research developments in the field. The results indicate the rapid growth of annual publications on MSWI ashes research, with China observed as the most productive country within the study period. Waste Management, Journal of Hazardous Materials, Chemosphere and Waste Management & Research, which accounted for 35.42% of documents on MSWI research, are the most prominent journals in the field. The most critical thematic areas on this topic are MSWI ashes characterisation, dioxin emissions from fly ash, valorisation of bottom ash and heavy metal removal. The evolution of MSWI ashes treatment technologies is also discussed, together with the challenges and future research directions. This is the first bibliometric analysis on global MSWI ashes research based on a sufficiently large dataset, which could provide new insights for researchers to initiate further research with leading institutions/authors and ultimately advance this research field.


Subject(s)
Coal Ash/chemistry , Refuse Disposal , Solid Waste , Bibliometrics , China , Coal Ash/analysis , Incineration , Solid Waste/analysis
SELECTION OF CITATIONS
SEARCH DETAIL