Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 13(1): 204, 2021 11 13.
Article in English | MEDLINE | ID: mdl-34774111

ABSTRACT

BACKGROUND: GGC repeat expansions in NOTCH2NLC are associated with neuronal intranuclear inclusion disease. Very recently, asymptomatic carriers with NOTCH2NLC repeat expansions were reported. In these asymptomatic individuals, the CpG island in NOTCH2NLC is hypermethylated, suggesting that two factors repeat length and DNA methylation status should be considered to evaluate pathogenicity. Long-read sequencing can be used to simultaneously profile genomic and epigenomic alterations. We analyzed four sporadic cases with NOTCH2NLC repeat expansion and their phenotypically normal parents. The native genomic DNA that retains base modification was sequenced on a per-trio basis using both PacBio and Oxford Nanopore long-read sequencing technologies. A custom workflow was developed to evaluate DNA modifications. With these two technologies combined, long-range DNA methylation information was integrated with complete repeat DNA sequences to investigate the genetic origins of expanded GGC repeats in these sporadic cases. RESULTS: In all four families, asymptomatic fathers had longer expansions (median: 522, 390, 528 and 650 repeats) compared with their affected offspring (median: 93, 117, 162 and 140 repeats, respectively). These expansions are much longer than the disease-causing range previously reported (in general, 41-300 repeats). Repeat lengths were extremely variable in the father, suggesting somatic mosaicism. Instability is more frequent in alleles with uninterrupted pure GGCs. Single molecule epigenetic analysis revealed complex DNA methylation patterns and epigenetic heterogeneity. We identified an aberrant gain-of-methylation region (2.2 kb in size beyond the CpG island and GGC repeats) in asymptomatic fathers. This methylated region was unmethylated in the normal allele with bilateral transitional zones with both methylated and unmethylated CpG dinucleotides, which may be protected from methylation to ensure NOTCH2NLC expression. CONCLUSIONS: We clearly demonstrate that the four sporadic NOTCH2NLC-related cases are derived from the paternal GGC repeat contraction associated with demethylation. The entire genetic and epigenetic landscape of the NOTCH2NLC region was uncovered using the custom workflow of long-read sequence data, demonstrating the utility of this method for revealing epigenetic/mutational changes in repetitive elements, which are difficult to characterize by conventional short-read/bisulfite sequencing methods. Our approach should be useful for biomedical research, aiding the discovery of DNA methylation abnormalities through the entire genome.


Subject(s)
Father-Child Relations , Genetic Background , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , DNA Methylation/genetics , DNA Methylation/physiology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Intercellular Signaling Peptides and Proteins/analysis , Nerve Tissue Proteins/analysis
2.
Trends Biochem Sci ; 39(2): 53-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24316303

ABSTRACT

ATP-dependent proteases exist in all cells and are crucial regulators of the proteome. These machines consist of a hexameric, ring-shaped motor responsible for engaging, unfolding, and translocating protein substrates into an associated peptidase for degradation. Here, we discuss recent work that has established how the six motor subunits coordinate their ATP-hydrolysis and translocation activities. The closed topology of the ring and the rigidity of subunit/subunit interfaces cause conformational changes within a single subunit to drive motions in other subunits of the hexamer. This structural effect generates allostery between the ATP-binding sites, leading to a preferred order of binding and hydrolysis events among the motor subunits as well as a unique biphasic mechanism of translocation.


Subject(s)
ATP-Dependent Proteases/metabolism , Adenosine Triphosphate/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Protein Subunits/metabolism , ATP-Dependent Proteases/chemistry , ATP-Dependent Proteases/genetics , Adenosine Triphosphate/chemistry , Allosteric Regulation , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Expression , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Transport , Proteolysis
3.
Cell ; 155(3): 636-646, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243020

ABSTRACT

ATP-dependent proteases are vital to maintain cellular protein homeostasis. Here, we study the mechanisms of force generation and intersubunit coordination in the ClpXP protease from E. coli to understand how these machines couple ATP hydrolysis to mechanical protein unfolding. Single-molecule analyses reveal that phosphate release is the force-generating step in the ATP-hydrolysis cycle and that ClpXP translocates substrate polypeptides in bursts resulting from highly coordinated conformational changes in two to four ATPase subunits. ClpXP must use its maximum successive firing capacity of four subunits to unfold stable substrates like GFP. The average dwell duration between individual bursts of translocation is constant, regardless of the number of translocating subunits, implying that ClpXP operates with constant "rpm" but uses different "gears."


Subject(s)
Endopeptidase Clp/chemistry , Endopeptidase Clp/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Escherichia coli/metabolism , Optical Tweezers , Phosphates/metabolism , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Protein Unfolding
SELECTION OF CITATIONS
SEARCH DETAIL
...