Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Genome Res ; 16(9): 1119-25, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16902086

ABSTRACT

Toxoplasma gondii is a globally distributed protozoan parasite that can infect virtually all warm-blooded animals and humans. Despite the existence of a sexual phase in the life cycle, T. gondii has an unusual population structure dominated by three clonal lineages that predominate in North America and Europe, (Types I, II, and III). These lineages were founded by common ancestors approximately10,000 yr ago. The recent origin and widespread distribution of the clonal lineages is attributed to the circumvention of the sexual cycle by a new mode of transmission-asexual transmission between intermediate hosts. Asexual transmission appears to be multigenic and although the specific genes mediating this trait are unknown, it is predicted that all members of the clonal lineages should share the same alleles. Genetic mapping studies suggested that chromosome Ia was unusually monomorphic compared with the rest of the genome. To investigate this further, we sequenced chromosome Ia and chromosome Ib in the Type I strain, RH, and the Type II strain, ME49. Comparative genome analyses of the two chromosomal sequences revealed that the same copy of chromosome Ia was inherited in each lineage, whereas chromosome Ib maintained the same high frequency of between-strain polymorphism as the rest of the genome. Sampling of chromosome Ia sequence in seven additional representative strains from the three clonal lineages supports a monomorphic inheritance, which is unique within the genome. Taken together, our observations implicate a specific combination of alleles on chromosome Ia in the recent origin and widespread success of the clonal lineages of T. gondii.


Subject(s)
Chromosomes , Evolution, Molecular , Toxoplasma/genetics , Animals , Crosses, Genetic , Genetic Variation , Genetics, Population , Inheritance Patterns , Meiosis , Molecular Sequence Data , Recombination, Genetic , Toxoplasma/classification
3.
Science ; 309(5731): 131-3, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15994557

ABSTRACT

Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.


Subject(s)
Genome, Protozoan , Protozoan Proteins/genetics , Theileria annulata/genetics , Theileria parva/genetics , Amino Acid Motifs , Animals , Cattle , Cell Proliferation , Chromosome Mapping , Chromosomes/genetics , Conserved Sequence , Genes, Protozoan , Life Cycle Stages , Lipid Metabolism , Lymphocytes/cytology , Lymphocytes/parasitology , Molecular Sequence Data , Multigene Family , Phylogeny , Protein Sorting Signals/genetics , Protein Structure, Tertiary , Proteome , Protozoan Proteins/chemistry , Protozoan Proteins/physiology , Sequence Analysis, DNA , Species Specificity , Synteny , Telomere/genetics , Theileria annulata/growth & development , Theileria annulata/immunology , Theileria annulata/pathogenicity , Theileria parva/growth & development , Theileria parva/immunology , Theileria parva/pathogenicity
4.
Fungal Genet Biol ; 41(4): 443-53, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14998527

ABSTRACT

Aspergillus fumigatus is the most ubiquitous opportunistic filamentous fungal pathogen of human. As an initial step toward sequencing the entire genome of A. fumigatus, which is estimated to be approximately 30 Mb in size, we have sequenced a 922 kb region, contained within 16 overlapping bacterial artificial chromosome (BAC) clones. Fifty-four percent of the DNA is predicted to be coding with 341 putative protein coding genes. Functional classification of the proteins showed the presence of a higher proportion of enzymes and membrane transporters when compared to those of Saccharomyces cerevisiae. In addition to the nitrate assimilation gene cluster, the quinate utilisation gene cluster is also present on this 922 kb genomic sequence. We observed large scale synteny between A. fumigatus and Aspergillus nidulans by comparing this sequence to the A. nidulans genetic map of linkage group VIII.


Subject(s)
Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Genome, Fungal , Nitrates/metabolism , Aspergillus nidulans/genetics , Chromosomes, Artificial, Bacterial , DNA, Fungal/chemistry , DNA, Fungal/isolation & purification , DNA, Intergenic , Enzymes/genetics , Enzymes/metabolism , Fungal Proteins/genetics , Fungal Proteins/physiology , Gene Order , Genomics , Introns , Membrane Transport Proteins/genetics , Membrane Transport Proteins/physiology , Molecular Sequence Data , Multigene Family , Open Reading Frames , Quinic Acid/metabolism , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA , Synteny
5.
Nat Genet ; 35(1): 32-40, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12910271

ABSTRACT

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Subject(s)
Bordetella bronchiseptica/genetics , Bordetella pertussis/genetics , Bordetella/genetics , Genome, Bacterial , Base Sequence , Bordetella/metabolism , Bordetella/pathogenicity , Bordetella bronchiseptica/metabolism , Bordetella bronchiseptica/pathogenicity , Bordetella pertussis/metabolism , Bordetella pertussis/pathogenicity , DNA, Bacterial , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
6.
Appl Environ Microbiol ; 68(10): 5082-95, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12324359

ABSTRACT

The entire 127,923-bp sequence of the toxin-encoding plasmid pBtoxis from Bacillus thuringiensis subsp. israelensis is presented and analyzed. In addition to the four known Cry and two known Cyt toxins, a third Cyt-type sequence was found with an additional C-terminal domain previously unseen in such proteins. Many plasmid-encoded genes could be involved in several functions other than toxin production. The most striking of these are several genes potentially affecting host sporulation and germination and a set of genes for the production and export of a peptide antibiotic.


Subject(s)
Bacillus thuringiensis/genetics , Bacterial Toxins/genetics , Genome, Bacterial , Plasmids/genetics , DNA Replication , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Circular/genetics , Genes , Genes, Bacterial , Molecular Sequence Data , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...