Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Tuberc Lung Dis ; 24(2): 150-164, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32127098

ABSTRACT

BACKGROUND: Indoor and ambient air pollution exposure is a major risk to respiratory health worldwide, particularly in low- and middle-income countries (LMICs). Interventional trials have mainly focused on alternatives to cooking stoves, with mixed results. Beyond cooking, additional sources of particulate matter also contribute to the burden of air pollution exposure. This review explores evidence from current randomised controlled trials (RCTs) on the clinical effectiveness of interventions to reduce particulate matter in LMICs.METHODS: Twelve databases and the grey literature (e.g., Government reports and policy papers) were searched. Eligible studies were RCTs conducted in LMICs aiming to reduce particulate exposure from any source and reporting on at least one clinical respiratory outcome (respiratory symptoms, lung function or clinical diagnoses). Data from relevant studies were systematically extracted, the risk of bias assessed and narrative synthesis provided.RESULTS: Of the 14 included studies, 12 tested 'improved' cookstoves, most using biomass, but solar and bioethanol cookers were also included. One trial used solar lamps and another was an integrated intervention incorporating behavioural and environmental components for the treatment and prevention of chronic obstructive pulmonary disease. Of the six studies reporting child pneumonia outcomes, none demonstrated significant benefit in intention-to-treat analysis. Ten studies reported respiratory symptom outcomes with some improvements seen, but self-reporting made these outcomes highly vulnerable to bias. Substantial inter-study clinical and methodological heterogeneity precluded calculation of pooled effect estimates.CONCLUSION: Evidence from the RCTs performed to date suggests that individual household-level interventions for air pollution exposure reduction have limited benefits for respiratory health. More comprehensive approaches to air pollution exposure reduction must be developed so their potential health benefits can be assessed.


Subject(s)
Air Pollution, Indoor , Air Pollution , Air Pollution/adverse effects , Air Pollution/prevention & control , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Child , Cooking , Dust , Family Characteristics , Humans , Particulate Matter
2.
Indoor Air ; 23(1): 14-24, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22563898

ABSTRACT

UNLABELLED: Household use of biomass fuels is a major source of indoor air pollution and poor health in developing countries. We conducted a cross-sectional investigation in rural Kenya to assess household air pollution in homes with traditional three-stone stove and rocket mud stove (RMS), a low-cost unvented wood stove. We conducted continuous measurements of kitchen carbon monoxide (CO) concentrations and personal exposures in 102 households. Median 48-h kitchen and personal CO concentrations were 7.3 and 6.5 ppm, respectively, for three-stone stoves, while the corresponding concentrations for RMS were 5.8 and 4.4 ppm. After adjusting for kitchen location, ventilation, socio-economic status, and fuel moisture content, the use of RMS was associated with 33% lower levels of kitchen CO [95% Confidence Interval (CI), 64.4-25.1%] and 42% lower levels of personal CO (95% CI, 66.0-1.1%) as compared to three-stone stoves. Differences in CO concentrations by stove type were more pronounced when averaged over the cooking periods, although they were attenuated after adjusting for confounding. In conclusion, RMS appear to lower kitchen and personal CO concentrations compared to the traditional three-stone stoves but overall, the CO concentrations remain high. PRACTICAL IMPLICATIONS: The rocket mud stoves (RMS) were associated with lower CO concentrations compared to three-stone stoves. However, the difference in concentrations was modest and concentrations in both stove groups exceeded the WHO guideline of 7 µg/m(3) , suggesting the unvented RMSs on their own are unlikely to appreciably benefit health in this population. Greater air quality benefit could be realized if the stoves were complemented with behavior change, including education on extinguishing fire when not in use as well as fuel drying, and cooking in locations that are separate from the main house.


Subject(s)
Carbon Monoxide/analysis , Cooking/instrumentation , Environmental Exposure/analysis , Cross-Sectional Studies , Humans , Kenya , Rural Population
SELECTION OF CITATIONS
SEARCH DETAIL
...