Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Cell Tissue Bank ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750214

ABSTRACT

Fatigue crack propagation resistance and high-cycle S-N fatigue life of cortical bone allograft tissue are both negatively impacted in a radiation dose-dependent manner from 0 to 25 kGy. The standard radiation sterilization dose of 25-35 kGy has been shown to induce cleavage of collagen molecules into smaller peptides and accumulation of stable crosslinks within the collagen matrix, suggesting that these mechanisms may influence radiation-induced losses in cyclic fracture resistance. The objective of this study was to determine the radiation dose-dependency of collagen chain fragmentation and crosslink accumulation within the dose range of 0-25 kGy. Previously, cortical bone compact tension specimens from two donor femoral pairs were divided into four treatment groups (0 kGy, 10 kGy, 17.5 kGy, and 25 kGy) and underwent cyclic loading fatigue crack propagation testing. Following fatigue testing, collagen was isolated from one compact tension specimen in each treatment group from both donors. Radiation-induced collagen chain fragmentation was assessed using SDS-PAGE (n = 5), and accumulation of pentosidine, pyridinoline, and non-specific advanced glycation end products were assessed using a fluorometric assay (n = 4). Collagen chain fragmentation increased progressively in a dose-dependent manner (p < 0.001). Crosslink accumulation at all radiation dose levels increased relative to the 0 kGy control but did not demonstrate dose-dependency (p < 0.001). Taken together with our previous findings on fatigue crack propagation behavior, these data suggest that while collagen crosslink accumulation may contribute to reduced notched fatigue behavior with irradiation, dose-dependent losses in fatigue crack propagation resistance are mainly influenced by radiation-induced chain fragmentation.

2.
J Orthop Res ; 41(1): 94-103, 2023 01.
Article in English | MEDLINE | ID: mdl-35332943

ABSTRACT

The mechano-biologic environment associated with aseptic loosening of cemented joint replacements is not fully understood. The goal of this study was to use a preclinical rat knee arthroplasty model to explore the changes in cement-bone morphology and micromotion that occur with in vivo service. Narrow gaps between cement and bone under the tibial tray were present at early time points, and with even small magnitude micromotion, resulted in large micromotion-to-gap width ratios. These data were then used to develop models of fluid flow in the cement-bone gaps to estimate potential for high fluid shear stress (FSS). Modeling results revealed supraphysiologic (>4 Pa) FSS were possible, particularly for cases in which eccentric loading applied to the implant and if the fluid in the gap consisted of marrow or synovial fluid. The early, high FSS environment, could cause fluid-induced periprosthetic osteolysis locally, resulting in progressive loss of cement-bone fixation.


Subject(s)
Rats , Animals
3.
J Orthop Res ; 40(12): 2843-2855, 2022 12.
Article in English | MEDLINE | ID: mdl-35266584

ABSTRACT

Postradiotherapy bone fragility fractures are a frequent late-onset complication in cancer survivors. There is a critical need to develop preventative interventions, and the use of Food and Drug Administration-approved drugs remains an attractive option. Prior data from our lab and others have shown that parathyroid hormone [1-34] mitigates radiotherapy-induced bone loss, but only for the duration of drug delivery. Utilizing a murine hindlimb radiotherapy model, we investigated whether orchestrated delivery of single-dose zoledronic acid could extend these anabolic benefits after cessation of parathyroid hormone delivery. We then explored the potential use of parathyroid hormone as a bone marrow radioprotectant. While the addition of zoledronic acid to parathyroid hormone increased irradiated bone mass, there was no increase in femur bending strength. In this model, the parathyroid hormone was not effective as a marrow radioprotectant, although this could be due to the short course of parathyroid hormone treatment. Marrow repopulation kinetics differed from those in total body irradiation, with hematopoietic stem cell repopulation occurring relatively early at four weeks postirradiation. Furthermore, we found radiation induced a loss of marrow stromal cells and an increase in inflammatory monocytes. Statement of Clinical Significance: Staged delivery of parathyroid hormone and zoledronic acid shows promise as an off-the-shelf intervention to mitigate post-radiotherapy bone damage in cancer patients, but parathyroid hormone is unlikely to function as a broad-spectrum marrow radioprotectant.


Subject(s)
Bone Density Conservation Agents , Bone Diseases, Metabolic , Humans , Mice , Animals , Zoledronic Acid/pharmacology , Bone Marrow , Bone Density Conservation Agents/pharmacology , Parathyroid Hormone , Bone Density , Bone Diseases, Metabolic/drug therapy
4.
Radiat Res ; 195(6): 590-595, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33826738

ABSTRACT

Mouse models are widely used in the study of musculoskeletal radiobiology both in vivo and in vitro. Two of the most commonly used mouse strains are C57BL/6 and BALB/c. However, little is known about their equivalence in response to ionizing radiation. In this study we compare the responses of marrow stromal cells derived from both of these strains to X rays in vitro at passages 0 and 2. Colony-forming efficiency was significantly higher in BALB/c marrow stromal cells at passage 0. Radiation-induced decreases in colony-forming unit (CFU) formation at passage 0 were comparable across both strains at 0-2 Gy, but BALB/c stromal cells were more radiosensitive than C57BL/6 stromal cells at 3-7 Gy. Osteogenic differentiation at passage 2 was not affected by radiation for either strain. This work demonstrates that commonly used inbred mouse strains differ in their early-passage marrow stromal cell responses to X rays, including self-renewal and differentiation potential. This variability is an important point to consider when selecting an animal model for in vivo or in vitro study.


Subject(s)
Bone Marrow Cells/cytology , Radiation Tolerance , Stromal Cells/cytology , Stromal Cells/radiation effects , Animals , Cell Differentiation/radiation effects , Cell Self Renewal/radiation effects , Dose-Response Relationship, Radiation , Mice , Osteogenesis/radiation effects , Species Specificity
5.
J Orthop Res ; 39(11): 2353-2362, 2021 11.
Article in English | MEDLINE | ID: mdl-33382095

ABSTRACT

Aseptic loosening of total knee arthroplasty continues to be a challenging clinical problem. The progression of the loosening process, from the initial well-fixed component, is not fully understood. In this study, loss of fixation of cemented hemiarthroplasty was explored using 9-month-old Sprague-Dawley rats with 0, 2, 6, 12, 26 week end points. Morphological and cellular changes of cement-bone fixation were determined for regions directly below the tibial tray (epiphysis) and distal to the tray (metaphysis). Loss of fixation, with a progressive increase in cement-bone gap volume was found in the epiphysis (0.162 mm3 /week), but did not progress appreciably in the metaphysis (0.007 mm3 /week). In the epiphysis, there was an early and sustained elevation of osteoclasts adjacent to the cement border and development of a fibrous tissue layer between the cement and bone. There was early formation of bone around the cement in the metaphysis, resulting in a condensed bone layer without osteoclastic bone resorption or development of a fibrous tissue layer. Implant positioning was also an important factor in the cement-bone gap formation, with greater gap formation for implants that were placed medially on the tibial articular surface. Loss of fixation in the rat model mimicked patterns found in human arthroplasty where cement-bone gaps initiate under the tibial tray, at the periphery of the implant. This preclinical model could be used to study early biological response to cemented fixation and associated contributions of mechanical instability, component alignment, and periprosthetic inflammation.


Subject(s)
Arthroplasty, Replacement, Knee , Bone Resorption , Knee Prosthesis , Animals , Arthroplasty, Replacement, Knee/methods , Bone Cements , Prosthesis Failure , Rats , Rats, Sprague-Dawley , Tibia/surgery
6.
Int J Radiat Oncol Biol Phys ; 109(5): 1454-1471, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33373655

ABSTRACT

PURPOSE: The oncogenic EWS:Fli1 fusion protein is a key transcriptional mediator of Ewing sarcoma initiation, progression, and therapeutic resistance. Mithramycin A (MithA) is a potent and specific inhibitor of transcription mediated by the EWS:Fli1. We tested the hypothesis that pretreatment with MithA could selectively radiosensitize EWS:Fli1+ tumor cells by altering the transcriptional response to radiation injury. METHODS AND MATERIALS: A panel of 4 EWS:Fli1+ and 3 EWS:Fli1- Ewing sarcoma cell lines and 1 nontumor cell line were subjected to MithA dose-response viability assays to determine the relative potency of MithA in cells possessing or lacking the EWS:Fli1 fusion. Radiosensitization by MithA was evaluated by clonogenic survival assays in vitro and in a murine xenograft model. DNA damage was evaluated by comet assay and γ-H2Ax flow cytometry. Immunoblotting, flow cytometry, and reverse-transcription, polymerase chain reaction were used to evaluate DNA damage-induced signaling and repair processes and apoptosis. RESULTS: We found that MithA alone could potently and selectively inhibit the growth of EWS:Fli1+ tumor cells, but not cells lacking this fusion. Pretreatment with MithA for 24 hours before irradiation significantly reduced clonogenic survival in vitro and delayed tumor regrowth in vivo, prolonging survival of EWS:Fli1+ tumor-bearing mice. Although MithA did not increase the level of DNA double-strand breaks, mechanistic studies revealed that MithA pretreatment selectively inhibited DNA double-strand break repair through downregulation of EWS:Fli1-mediated transcription, leading to tumor cell death by apoptosis. CONCLUSIONS: Our data indicate that MithA is an effective radiosensitizer of EWS:Fli1+ tumors and may achieve better local control at lower doses of radiation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/drug effects , Oncogene Proteins, Fusion/metabolism , Plicamycin/analogs & derivatives , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Radiation-Sensitizing Agents/pharmacology , Sarcoma, Ewing/radiotherapy , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Comet Assay , Dose-Response Relationship, Drug , Down-Regulation , Histones/metabolism , Mice , Plicamycin/pharmacology , Radiation Tolerance , Reverse Transcriptase Polymerase Chain Reaction , Sarcoma, Ewing/chemistry , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Xenograft Model Antitumor Assays
7.
J Orthop Res ; 39(4): 750-760, 2021 04.
Article in English | MEDLINE | ID: mdl-32965711

ABSTRACT

Post-radiotherapy (RTx) bone fragility fractures are a late-onset complication occurring in bone within or underlying the radiation field. These fractures are difficult to predict, as patients do not present with local osteopenia. Using a murine hindlimb RTx model, we previously documented decreased mineralized bone strength and fracture toughness, but alterations in material properties of the organic bone matrix are largely unknown. In this study, 4 days of fractionated hindlimb irradiation (4 × 5 Gy) or Sham irradiation was administered in a mouse model (BALB/cJ, end points: 0, 4, 8, and 12 weeks, n = 15/group/end point). Following demineralization, the viscoelastic stress relaxation, and monotonic tensile mechanical properties of tibiae were determined. Irradiated tibiae demonstrated an immediate (day after last radiation fraction) and sustained (4, 8, 12 weeks) increase in stress relaxation compared to the Sham group, with a 4.4% decrease in equilibrium stress (p < .017). While tensile strength was not different between groups, irradiated tibiae had a lower elastic modulus (-5%, p = .027) and energy to failure (-12.2%, p = .012) with monotonic loading. Gel electrophoresis showed that therapeutic irradiation (4 × 5 Gy) does not result in collagen fragmentation, while irradiation at a common sterilization dose (25 kGy) extensively fragmented collagen. These results suggest that altered collagen mechanical behavior has a role in postirradiation bone fragility, but this can occur without detectable collagen fragmentation. Statement of Clinical Significance: Therapeutic irradiation alters bone organic matrix mechanics and which contribute to diminished fatigue strength, but this does not occur via collagen fragmentation.


Subject(s)
Bone Diseases, Metabolic/diagnostic imaging , Bone Diseases, Metabolic/radiotherapy , Radiotherapy/adverse effects , Tibia/radiation effects , Animals , Bone Density , Collagen/chemistry , Elasticity , Female , Finite Element Analysis , Fractures, Bone/diagnostic imaging , Mice , Mice, Inbred BALB C , Stress, Mechanical , Tensile Strength , Tibia/diagnostic imaging , Viscosity , X-Ray Microtomography
8.
Bone Rep ; 12: 100262, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32258252

ABSTRACT

BACKGROUND: Cancer patients receiving radiotherapy for soft tissue sarcomas are often at risk of post-irradiation (post-RTx) bone fragility fractures, but our understanding of factors controlling radiation-induced bone injury is limited. Previous studies have evaluated post-RTx changes to cortical bone composition in the periosteum of irradiated tibiae, but have not evaluated effects of irradiation in deeper tissues, such as endosteal or mid-cortical bone, and whether there are differential spatial effects of irradiation. In this study, we hypothesize that post-RTx changes to cortical bone composition are greater in endosteal compared to mid-cortical or periosteal bone. METHODS: A pre-clinical mouse model of limited field hindlimb irradiation was used to evaluate spatial and temporal post-RTx changes to the metaphyseal cortex of irradiated tibiae. Irradiation was delivered unilaterally to the hindlimbs of 12-wk old female BALB/cJ mice as 4 consecutive daily doses of 5 Gy each. RTx and non-RTx tibiae were obtained at 0, 2, 4, 8, and 12 wks post-RTx (n = 9 mice/group/time). Raman spectroscopy was used to evaluate spatial and temporal post-RTx changes to cortical bone composition in age-matched RTx and non-RTx groups. RESULTS: Significant early spatial differences in mineral/matrix and collagen crosslink ratios were found between endosteal and periosteal or mid-cortical bone at 2-wks post-RTx. Although spatial differences were transient, mineral/matrix ratios significantly decreased and collagen crosslink ratios significantly increased with post-RTx time throughout the entire tibial metaphyseal cortex. CONCLUSIONS: Irradiation negatively impacts the composition of cortical bone in a spatially-dependent manner starting as early as 2-wks post-RTx. Long-term progressive post-RTx changes across all cortical bone sites may eventually contribute to the increased risk of post-RTx bone fragility fractures.

9.
J Orthop Res ; 38(7): 1529-1537, 2020 07.
Article in English | MEDLINE | ID: mdl-32167182

ABSTRACT

A preclinical rat knee replacement model was recently developed to explore the biological and mechanobiological changes of trabecular resorption for cement-bone interdigitated regions. The goal here was to evaluate the relevance of this model compared with human knee replacement with regards to functional micromechanics. Eight nonsurvival, cemented knee replacement surgeries were performed, the interdigitated gap morphology was quantified, and interface micromotion between cement and bone was measured for 1 to 5 bodyweight loading. Computational fluid dynamics modeling of unit cell geometries with small gaps between trabeculae and cement was used to estimate fluid flow. Gap width (3.6 µm) was substantially smaller compared with cement-bone gaps reported in human knee replacement (11.8 µm). Micromotion at the cement-bone border was also decreased for the rat knee replacement (0.48 µm), compared with human (1.97 µm), for 1 bodyweight loading. However, the micromotion-to-gap width ratio (0.19 and 0.22 for, rat and human), and estimated fluid shear stress (6.47 and 7.13 Pa, for rat and human) were similar. Replicating the fluid dynamic characteristics of cement-bone interdigitated regions in human knee replacements using preclinical models may be important to recapitulate trabecular resorption mechanisms due to proposed supraphysiologic fluid shear stress. Statement of clinical significance: local cement-bone micromotion due to joint loading may contribute to the process of clinical loosening in total joint replacements. This work shows that while micromotion and gap morphology are diminished for the rat knee model compared to human, the motion-to-gap ratio, and corresponding fluid shear stress are of similar magnitudes.


Subject(s)
Arthroplasty, Replacement, Knee , Bone Cements , Bone-Implant Interface , Animals , Biomechanical Phenomena , Female , Humans , Hydrodynamics , Rats , Rats, Sprague-Dawley
10.
J Orthop Res ; 37(10): 2163-2171, 2019 10.
Article in English | MEDLINE | ID: mdl-31206747

ABSTRACT

Trabecular resorption from interdigitated regions between cement and bone has been found in postmortem-retrieved knee replacements, but the viability of interdigitated bone, and the mechanism responsible for this bone loss is not known. In this work, a Sprague-Dawley (age 12 weeks) rat knee replacement model with an interdigitated cement-bone interface was developed. Morphological and cellular changes in the interdigitated region of the knee replacement over time (0, 2, 6, or 12 weeks) were determined for ovariectomy (OVX) and Sham OVX treatment groups. Interdigitated bone volume fraction (BV/TV) increased with time for Sham OVX (0.022 BV/TV/wk) and OVX (0.015 BV/TV/wk) group, but the rate of increase was greater for the Sham OVX group (p = 0.0064). Tissue mineral density followed a similar increase with time in the interdigitated regions. Trabecular resorption, when it did occur, started at the cement border with medullary-adjacent bone in the presence of osteoclasts. There was substantial loss of viable bone (~80% empty osteocyte lacunae) in the interdigitated regions. Pre-surgical fluorochrome labels remained in the interdigitated regions, and did not diminish with time, indicating that the bone was not remodeling. There was also some evidence of continued surface mineralization in the interdigitated region after cementing of the knee, but this diminished over time. Statement of clinical significance: Interdigitated bone with cement provides mechanical stability for success of knee replacements. Improved understanding of the fate of the interdigitated bone over time could lead to a better understanding of the loosening process and interventions to prevent loss of fixation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2163-2171, 2019.


Subject(s)
Arthroplasty, Replacement, Knee , Bone-Implant Interface/pathology , Osteoporosis, Postmenopausal , Animals , Bone Cements , Calcification, Physiologic , Female , Humans , Osteoclasts , Rats, Sprague-Dawley
11.
PLoS One ; 13(10): e0204928, 2018.
Article in English | MEDLINE | ID: mdl-30281657

ABSTRACT

Fragility fractures are a well-known complication following oncologic radiotherapy, and it is suspected that radiation-induced embrittlement of bone within the treatment field may contribute to fracture risk. To explore this phenomenon, a mouse model (BALB/cJ) of fractionated, limited field, bilateral hindlimb irradiation (4x5 Gy) was used. The effects of radiation on femoral (cortical) bone fracture toughness, morphology, and biochemistry-including advanced glycation end products (AGEs)-were quantified and compared to Sham group samples prior to irradiation and at 0, 4, 8, and 12 weeks post-irradiation. Additionally, alterations to bone fracture toughness mediated directly by radiation (independent of cellular mechanisms) were determined using devitalized mouse cadaver femurs. Finally, the contribution of AGEs to reduced fracture toughness was examined by artificially ribosylating mouse femurs ex vivo. These data demonstrate that in vivo irradiation results in an immediate (-42% at 0 weeks, p < 0.001) and sustained (-28% at 12 weeks, p < 0.001) decrease in fracture toughness with small changes in morphology (-5% in cortical area at 12 weeks), and minimal changes in bone composition (tissue mineral density, mineral:matrix ratio, and AGE content). Irradiation of devitalized femurs also reduced fracture toughness (-29%, p < 0.001), but to a lesser extent than was seen in vivo. While artificial ribosylation decreased fracture toughness with time, the extent of glycation needed to induce this effect exceeded the AGE accumulation that occurred in vivo. Overall, hindlimb irradiation induced a substantial and sustained decrease in bone fracture toughness. Approximately half of this decrease in fracture toughness is due to direct radiation damage, independent of cellular remodeling. Collagen glycation in vivo was not substantially altered, suggesting other matrix changes may contribute to post-radiotherapy bone embrittlement.


Subject(s)
Femoral Fractures/physiopathology , Glycation End Products, Advanced/metabolism , Radiotherapy/adverse effects , Animals , Biomechanical Phenomena , Disease Models, Animal , Female , Femoral Fractures/etiology , Femoral Fractures/metabolism , Mice , X-Ray Microtomography
12.
J Bone Miner Res ; 33(1): 99-112, 2018 01.
Article in English | MEDLINE | ID: mdl-28902435

ABSTRACT

Radiation therapy (RTx) is associated with increased risk for late-onset fragility fractures in bone tissue underlying the radiation field. Bone tissue outside the RTx field is often selected as a "normal" comparator tissue in clinical assessment of fragility fracture risk, but the robustness of this comparison is limited by an incomplete understanding of the systemic effects of local radiotherapy. In this study, a mouse model of limited field irradiation was used to quantify longitudinal changes in local (irradiated) and systemic (non-irradiated) femurs with respect to bone density, morphology, and strength. BALB/cJ mice aged 12 weeks underwent unilateral hindlimb irradiation (4 × 5 Gy) or a sham procedure. Femurs were collected at endpoints of 4 days before treatment and at 0, 1, 2, 4, 8, 12, and 26 weeks post-treatment. Irradiated (RTx), Contralateral (non-RTx), and Sham (non-RTx) femurs were imaged by micro-computed tomography and mechanically tested in three-point bending. In both the RTx and Contralateral non-RTx groups, the longer-term (12- to 26-week) outcomes included trabecular resorption, loss of diaphyseal cortical bone, and decreased bending strength. Contralateral femurs generally followed an intermediate response compared with RTx femurs. Change also varied by anatomic compartment; post-RTx loss of trabecular bone was more profound in the metaphyseal than the epiphyseal compartment, and cortical bone thickness decreased at the mid-diaphysis but increased at the metaphysis. These data demonstrate that changes in bone quantity, density, and architecture occur both locally and systemically after limited field irradiation and vary by anatomic compartment. Furthermore, the severity and persistence of systemic bone damage after limited field irradiation suggest selection of control tissues for assessment of fracture risk or changes in bone density after radiotherapy may be challenging. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Femur/anatomy & histology , Femur/physiology , Hindlimb/radiation effects , Animals , Biomechanical Phenomena , Bone Density/radiation effects , Cancellous Bone/anatomy & histology , Cancellous Bone/diagnostic imaging , Cancellous Bone/physiology , Cancellous Bone/radiation effects , Cortical Bone/anatomy & histology , Cortical Bone/diagnostic imaging , Cortical Bone/physiology , Cortical Bone/radiation effects , Diaphyses/anatomy & histology , Diaphyses/diagnostic imaging , Diaphyses/physiology , Diaphyses/radiation effects , Female , Femur/diagnostic imaging , Femur/radiation effects , Longitudinal Studies , Mice, Inbred BALB C , X-Ray Microtomography
13.
J Orthop Res ; 35(12): 2773-2780, 2017 12.
Article in English | MEDLINE | ID: mdl-28452065

ABSTRACT

With in vivo service, there is loss of mechanical interlock between trabeculae and PMMA cement in total knee replacements. The mechanisms responsible for the loss of interlock are not known, but loss of interlock results in weaker cement-bone interfaces. The goal of this study was to determine the pattern of resorption of interdigitated bone using a series of 20 postmortem retrieved knee replacements with a wide range of time in service (3-22 years). MicroCT scans were obtained of a segment of the cement-bone interface below the tibial tray for each implant. Image processing methods were used to determine interface morphology and to identify supporting, interdigitated, resorbed, and isolated bone as a function of axial position. Overall, the amount of remaining interdigitated bone decreased with time in service (p = 0.0114). The distance from the cement border (at the extent of cement penetration into the bone bed) to 50% of the interdigitated volume decreased with time in service (p = 0.039). Isolated bone, when present, was located deep in the cement layer. Overall, resorption appears to start at the cement border and progresses into the cement layer. Initiation of trabecular resorption near the cement border may be a consequence of proximity to osteoclastic cells in the adjacent marrow space. CLINICAL SIGNIFICANCE: Aseptic loosening of joint replacements remains an important clinical problem. This work explores the process and pattern of trabecular bone resorption responsible for loss of interface fixation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2773-2780, 2017.


Subject(s)
Arthroplasty, Replacement, Knee/adverse effects , Bone Resorption/etiology , Prosthesis Failure/etiology , Aged , Aged, 80 and over , Arthroplasty, Replacement, Knee/instrumentation , Bone Resorption/diagnostic imaging , Bone Resorption/pathology , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Female , Humans , Male , Middle Aged , X-Ray Microtomography
14.
J Arthroplasty ; 32(7): 2289-2300, 2017 07.
Article in English | MEDLINE | ID: mdl-28285038

ABSTRACT

BACKGROUND: Loss of mechanical interlock between cement and bone with in vivo service has been recently quantified for functioning, nonrevised, cemented total knee arthroplasties (TKAs). The cause of interlocking trabecular resorption is not known. The goal of this study is to quantify the distribution of PE debris at the cement-bone interface and determine if polyethylene (PE) debris is locally associated with loss of interlock. METHODS: Fresh, nonrevised, postmortem-retrieved TKAs (n = 8) were obtained en bloc. Laboratory-prepared constructs (n = 2) served as negative controls. The intact cement-bone interface of each proximal tibia was embedded in Spurr's resin, sectioned, and imaged under polarized light to identify birefringent PE particles. PE wear particle number density was quantified at the cement-bone interface and distal to the interface, and then compared with local loss of cement-bone interlock. RESULTS: The average PE particle number density for postmortem-retrieved TKAs ranged from 8.6 (1.3) to 24.9 (3.1) particles/mm2 (standard error) but was weakly correlated with years in service. The average particle number density was twice as high as distal (>5mm) to the interface compared to at the interface. The local loss of interlock at the interface was not related to the presence, absence, or particle density of PE. CONCLUSION: PE debris can migrate extensively along the cement-bone interface of well-fixed tibial components. However, the amount of local bone loss at the cement-bone interface was not correlated with the amount of PE debris at the interface, suggesting that the observed loss of trabecular interlock in these well-fixed TKAs may be due to alternative factors.


Subject(s)
Arthroplasty, Replacement, Knee/adverse effects , Bone-Implant Interface , Polyethylene , Prosthesis Failure , Tibia/surgery , Adult , Aged , Aged, 80 and over , Bone Cements , Bone Resorption , Female , Humans , Knee/pathology , Male , Middle Aged , Prostheses and Implants
15.
J Orthop Res ; 35(8): 1707-1715, 2017 08.
Article in English | MEDLINE | ID: mdl-27653318

ABSTRACT

Treatment of secondary pediatric osteoporosis-particularly that due to chronic diseases, immobilization, and necessary medical treatments-is currently limited by a poor understanding of the long-term efficacy and safety of skeletal metabolism modifying drugs. This study aimed to characterize longitudinal effects of representative anabolic (parathyroid hormone, PTH) and anti-catabolic (zoledronic acid, ZA) drugs on skeletal morphology, mechanical strength, and growth in juvenile mice. BALB/cJ mice aged 4 weeks were given PTH(1-34) or vehicle (control) daily for 8 weeks, or 4 weekly doses of ZA, and evaluated at time points 0-26 weeks after treatment initiation. There were no enduring differences in body length or mass between treatment groups. ZA increased femur size as early as week 0, including increased distal femur bone volume and diaphyseal cross-sectional area, persisting through week 26. PTH treatment only transiently increased bone size, including distal femur volume at weeks 4-12. ZA decreased diaphyseal cortical tissue mineral density (TMD) at 12-26 weeks versus controls; PTH decreased TMD only at 2 weeks (vs. controls). ZA increased bending strength at 0-12 weeks and flexural strength at week 4 (vs. controls), but decreased flexural strength and modulus at week 26. PTH treatment increased bending strength only at 4 weeks, and did not affect flexural strength. Overall, ZA rapidly and persistently increased femur strength and size, but compromised bone material quality long-term. In healthy juvenile mice, limited-duration PTH treatment did not exert a strong anabolic effect, and had no adverse effects on femur strength, morphology, or growth. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1707-1715, 2017.


Subject(s)
Bone Density Conservation Agents/pharmacology , Diphosphonates/pharmacology , Femur/drug effects , Imidazoles/pharmacology , Osteoporosis/drug therapy , Parathyroid Hormone/pharmacology , Animals , Bone Density Conservation Agents/therapeutic use , Diphosphonates/therapeutic use , Drug Evaluation, Preclinical , Female , Growth/drug effects , Imidazoles/therapeutic use , Mice, Inbred BALB C , Parathyroid Hormone/therapeutic use , Random Allocation , Zoledronic Acid
16.
Bone ; 86: 91-97, 2016 May.
Article in English | MEDLINE | ID: mdl-26960578

ABSTRACT

As part of our ongoing efforts to understand underlying mechanisms contributing to radiation-associated bone fragility and to identify possible treatments, we evaluated the longitudinal effects of parathyroid hormone (PTH) treatment on bone quality in a murine model of limited field irradiation. We hypothesized PTH would mitigate radiation-induced changes in the chemical composition and structure of bone, as measured by microscope-based Raman spectroscopy. We further hypothesized that collagen crosslinking would be especially responsive to PTH treatment. Raman spectroscopy was performed on retrieved tibiae (6-7/group/time point) to quantify metrics associated with bone quality, including: mineral-to-matrix ratio, carbonate-to-phosphate ratio, mineral crystallinity, collagen crosslink (trivalent:divalent) ratio, and the mineral and matrix depolarization ratios. Irradiation disrupted the molecular structure and orientation of bone collagen, as evidenced by a higher collagen crosslink ratio and lower matrix depolarization ratio (vs. non-irradiated control bones), persisting until 12weeks post-irradiation. Radiation transiently affected the mineral phase, as evidenced by increased mineral crystallinity and mineral-to-matrix ratio at 4weeks compared to controls. Radiation decreased bone mineral depolarization ratios through 12weeks, indicating increased mineral alignment. PTH treatment partially attenuated radiation-induced increases in collagen crosslink ratio, but did not restore collagen or mineral alignment. These post-radiation matrix changes are consistent with our previous studies of radiation damage to bone, and suggest that the initial radiation damage to bone matrix has extensive effects on the quality of tissue deposited thereafter. In addition to maintaining bone quality, preventing initial radiation damage to the bone matrix (i.e. crosslink ratio, matrix orientation) may be critical to preventing late-onset fragility fractures.


Subject(s)
Collagen/metabolism , Cross-Linking Reagents/metabolism , Parathyroid Hormone/pharmacology , Periosteum/drug effects , Periosteum/radiation effects , Tibia/drug effects , Tibia/radiation effects , Animals , Bone Matrix/drug effects , Bone Matrix/radiation effects , Calcification, Physiologic/drug effects , Calcification, Physiologic/radiation effects , Female , Mice, Inbred BALB C , Spectrum Analysis, Raman , X-Rays
17.
Calcif Tissue Int ; 98(6): 619-30, 2016 06.
Article in English | MEDLINE | ID: mdl-26847434

ABSTRACT

Radiation therapy for soft tissue sarcoma or tumor metastases is frequently associated with damage to the underlying bone. Using a mouse model of limited field hindlimb irradiation, we assessed the ability of parathyroid hormone (1-34) fragment (PTH) delivery to prevent radiation-associated bone damage, including loss of mechanical strength, trabecular architecture, cortical bone volume, and mineral density. Female BALB/cJ mice received four consecutive doses of 5 Gy to a single hindlimb, accompanied by daily injections of either PTH or saline (vehicle) for 8 weeks, and were followed for 26 weeks. Treatment with PTH maintained the mechanical strength of irradiated femurs in axial compression for the first eight weeks of the study, and the apparent strength of irradiated femurs in PTH-treated mice was greater than that of naïve bones during this time. PTH similarly protected against radiation-accelerated resorption of trabecular bone and transient decrease in mid-diaphyseal cortical bone volume, although this benefit was maintained only for the duration of PTH delivery. Overall, PTH conferred protection against radiation-induced fragility and morphologic changes by increasing the quantity of bone, but only during the period of administration. Following cessation of PTH delivery, bone strength and trabecular volume fraction rapidly decreased. These data suggest that PTH does not negate the longer-term potential for osteoclastic bone resorption, and therefore, finite-duration treatment with PTH alone may not be sufficient to prevent late onset radiotherapy-induced bone fragility.


Subject(s)
Bone Density/drug effects , Bone and Bones/drug effects , Bone and Bones/radiation effects , Parathyroid Hormone/pharmacology , Radiation Injuries, Experimental/prevention & control , Animals , Disease Models, Animal , Female , Femur/drug effects , Femur/radiation effects , Mice , Mice, Inbred BALB C , X-Ray Microtomography
18.
Biomaterials ; 76: 388-98, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26561935

ABSTRACT

Treatment of complex bone defects places a significant burden on the US health care system. Current strategies for treatment include grafting and stabilization using internal metal plates/screws, intramedullary rods, or external fixators. Here, we introduce the use of shape memory polymer (SMP) materials for grafting and adjunct stabilization of segmental defects. Self-deploying SMP grafts and SMP sleeves capable of expanding and contracting, respectively, under intraoperative conditions were developed and evaluated in a mouse segmental defect model in vivo. Integration between grafts/sleeves and native bone was assessed using x-ray radiography, microcomputed tomography, and torsional mechanical testing. We found that SMP grafts were able to integrate with the native bone after 12 weeks, maintain defect stability, and provide torsional mechanical properties comparable to an allograft alone treatment; however no gross de novo bone formation was observed. SMP sleeves did not inhibit bony bridging at the margins, and limbs treated with a sleeve/allograft combination had torsional mechanical properties comparable to limbs treated with an allograft alone. In vitro torsional and bending tests suggest sleeves may provide additional torsional stability to defects. Incorporation of shape memory into synthetic bone graft substitutes and adjunct stabilization devices is anticipated to enhance functionality of synthetic materials employed in both applications.


Subject(s)
Femur/abnormalities , Polymers/chemistry , Tissue Scaffolds , Animals , Female , Mice , Mice, Inbred C57BL
19.
J Orthop Res ; 33(3): 334-42, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25408493

ABSTRACT

Late-onset fragility fractures are a common complication following radiotherapy for metastatic disease and soft tissue sarcomas. Using a murine hindlimb focal irradiation model (RTx), we quantified time-dependent changes in osteoclasts and mineral apposition rate (MAR). Mice received either a single, unilateral 5 Gy exposure or four fractionated doses (4 × 5 Gy). Osteoclast numbers and MAR were evaluated histologically at 1, 2, 4, 8, 12, and 26 weeks post-RTx. Radiation induced an early, transient increase in osteoclasts followed by long-term depletion. Increased osteoclast numbers correlated temporally with trabecular resorption; the resorbed trabeculae were not later restored. Radiotherapy did not attenuate MAR at any time point. A transient, early increase in MAR was noted in both RTx groups, however, the 4 × 5 Gy group exhibited an unexpected spike in MAR eight weeks. Persistent depletion of osteoclasts permitted anabolic activity to continue unopposed, resulting in cortical thickening. These biological responses likely contribute to post-radiotherapy bone fragility via microdamage accumulation and matrix embrittlement in the absence of osteoclastic remodeling, and trabecular resorption-induced decrease in bone strength. The temporal distribution of osteoclast numbers suggests that anti-resorptive therapies may be of clinical benefit only if started prior to radiotherapy and continued through the following period of increased osteoclastic remodeling.


Subject(s)
Bone Density/radiation effects , Fractures, Bone/etiology , Osteoclasts/radiation effects , Radiotherapy/adverse effects , Animals , Female , Femur/radiation effects , Hindlimb/radiation effects , Mice
20.
Radiat Res ; 181(4): 439-43, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24701964

ABSTRACT

Advanced glycation end products (AGEs) are an abnormal modification of the collagenous matrix in bone, and their accumulation contributes to alteration of mechanical properties. Using a mouse model of focal external radiotherapy, we quantified the time-dependent changes in the glycation of bone collagen after 4 daily fractions of 5 Gy exposure to unilateral hindlimb. Fluorometric analysis of decalcified femurs demonstrated a significant and transient increase in the quantity of pentosidine, pyridinolines and nonspecific AGEs per unit of collagen at one week postirradiation. These differences did not persist at 4, 8, 12 or 26 weeks postirradiation. Radiation had no effect on bone collagen content. We hypothesize that following the transient increase in glycation products, these crosslinks are then removed as a result of increased postirradiation osteoclast activity and continued mineralization of the bone.


Subject(s)
Bone and Bones/radiation effects , Glycation End Products, Advanced/metabolism , Animals , Bone and Bones/metabolism , Female , Mice , Mice, Inbred BALB C , Radiotherapy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...