Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Science ; 339(6124): 1207-10, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23471408

ABSTRACT

Some microbial eukaryotes, such as the extremophilic red alga Galdieria sulphuraria, live in hot, toxic metal-rich, acidic environments. To elucidate the underlying molecular mechanisms of adaptation, we sequenced the 13.7-megabase genome of G. sulphuraria. This alga shows an enormous metabolic flexibility, growing either photoautotrophically or heterotrophically on more than 50 carbon sources. Environmental adaptation seems to have been facilitated by horizontal gene transfer from various bacteria and archaea, often followed by gene family expansion. At least 5% of protein-coding genes of G. sulphuraria were probably acquired horizontally. These proteins are involved in ecologically important processes ranging from heavy-metal detoxification to glycerol uptake and metabolism. Thus, our findings show that a pan-domain gene pool has facilitated environmental adaptation in this unicellular eukaryote.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genes, Archaeal , Genes, Bacterial , Genome, Plant/genetics , Rhodophyta/genetics , Rhodophyta/microbiology , Adenosine Triphosphatases/genetics , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , DNA, Algal , Phylogeny , Rhodophyta/physiology
2.
Plant Cell Physiol ; 48(9): 1359-73, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17698881

ABSTRACT

Redox modulation is a general mechanism for enzyme regulation, particularly for the post-translational regulation of the Calvin cycle in chloroplasts of green plants. Although red algae and photosynthetic protists that harbor plastids of red algal origin contribute greatly to global carbon fixation, relatively little is known about post-translational regulation of chloroplast enzymes in this important group of photosynthetic eukaryotes. To address this question, we used biochemistry, phylogenetics and analysis of recently completed genome sequences. We studied the functionality of the chloroplast enzymes phosphoribulokinase (PRK, EC 2.7.1.19), NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP-GAPDH, GapA, EC 1.2.1.13), fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) and glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49), as well as NADP-malate dehydrogenase (NADP-MDH, EC 1.1.1.37) in the unicellular red alga Galdieria sulphuraria (Galdieri) Merola. Despite high sequence similarity of G. sulphuraria proteins to those of other photosynthetic organisms, we found a number of distinct differences. Both PRK and GAPDH co-eluted with CP12 in a high molecular weight complex in the presence of oxidized glutathione, although Galdieria CP12 lacks the two cysteines essential for the formation of the N-terminal peptide loop present in higher plants. However, PRK inactivation upon complex formation turned out to be incomplete. G6PDH was redox modulated, but remained in its tetrameric form; FBPase was poorly redox regulated, despite conservation of the two redox-active cysteines. No indication for the presence of plastidic NADP-MDH (and other components of the malate valve) was found.


Subject(s)
Algal Proteins/metabolism , Chloroplasts/enzymology , Enzymes/metabolism , Rhodophyta/enzymology , Algal Proteins/chemistry , Algal Proteins/genetics , Amino Acid Sequence , Gene Expression Regulation, Plant , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/chemistry , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/genetics , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/metabolism , Malate Dehydrogenase (NADP+)/chemistry , Malate Dehydrogenase (NADP+)/genetics , Malate Dehydrogenase (NADP+)/metabolism , Molecular Sequence Data , Oxidation-Reduction , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/enzymology , Plants/genetics , Rhodophyta/genetics , Rhodophyta/metabolism , Sequence Alignment
3.
Plant J ; 51(3): 500-11, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17587234

ABSTRACT

Extremophilic organisms are gaining increasing interest because of their unique metabolic capacities and great biotechnological potential. The unicellular acidophilic and mesothermophilic red alga Galdieria sulphuraria (074G) can grow autotrophically in light as well as heterotrophically in the dark. In this paper, the effects of externally added glucose on primary and secondary photosynthetic reactions are assessed to elucidate mixotrophic capacities of the alga. Photosynthetic O2 evolution was quantified in an open system with a constant supply of CO2 to avoid rapid volatilization of dissolved inorganic carbon at low pH levels. In the presence of glucose, O2 evolution was repressed even in illuminated cells. Ratios of variable to maximum chlorophyll fluorescence (Fv/Fm) and 77 K fluorescence spectra indicated a reduced photochemical efficiency of photosystem II. The results were corroborated by strongly reduced levels of the photosystem II reaction centre protein D1. The downregulation of primary photosynthetic reactions was accompanied by reduced levels of the Calvin Cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Both effects depended on functional sugar uptake and are thus initiated by intracellular rather than extracellular glucose. Following glucose depletion, photosynthetic O2 evolution of illuminated cells commenced after 15 h and Rubisco levels again reached the levels of autotrophic cells. It is concluded that true mixotrophy, involving electron transport across both photosystems, does not occur in G. sulphuraria 074G, and that heterotrophic growth is favoured over autotrophic growth if sufficient organic carbon is available.


Subject(s)
Glucose/physiology , Light , Oxygen/metabolism , Photosynthesis/physiology , Rhodophyta/physiology , Carbon/chemistry , Carbon/metabolism , Culture Media/chemistry , Down-Regulation , Energy Metabolism/physiology , Hydrogen-Ion Concentration , Phosphates/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Rhodophyta/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Spectrometry, Fluorescence
4.
Biochem J ; 406(2): 325-31, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17497961

ABSTRACT

The unicellular red alga Galdieria sulphuraria is a facultative heterotrophic member of the Cyanidiaceae, a group of evolutionary highly conserved extremophilic red algae. Uptake of various sugars and polyols is accomplished by a large number of distinct plasma membrane transporters. We have cloned three transporters [GsSPT1 (G. sulphuraria sugar and polyol transporter 1), GsSPT2 and GsSPT4], followed their transcriptional regulation and assayed their transport capacities in the heterologous yeast system. SPT1 is a conserved type of sugar/H(+) symporter with 12 predicted transmembrane-spanning domains, whereas SPT2 and SPT4 represent monosaccharide transporters, characterized by only nine hydrophobic domains. Surprisingly, all three proteins are functional plasma membrane transporters, as demonstrated by genetic complementation of a sugar uptake-deficient yeast mutant. Substrate specificities were broad and largely redundant, except for glucose, which was only taken up by SPT1. Comparison of SPT1 and truncated SPT1(Delta1-3) indicated that the N-terminus of the protein is not required for sugar transport or substrate recognition. However, its deletion affected substrate affinity as well as maximal transport velocity and released the pH dependency of sugar uptake. In line with these results, uptake by SPT2 and SPT4 was active but not pH-dependent, making a H(+) symport mechanism unlikely for the truncated proteins. We postulate SPT2 and SPT4 as functional plasma membrane transporters in G. sulphuraria. Most likely, they originated from genes encoding active monosaccharide/H(+) symporters with 12 transmembrane-spanning domains.


Subject(s)
Evolution, Molecular , Monosaccharide Transport Proteins/metabolism , Rhodophyta/metabolism , Cloning, Molecular , Fucose/metabolism , Gene Expression Regulation , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Monosaccharide Transport Proteins/classification , Monosaccharide Transport Proteins/genetics , Rhodophyta/classification , Rhodophyta/genetics , Substrate Specificity , Transcription, Genetic/genetics
5.
Biochem J ; 2007 Mar 07.
Article in English | MEDLINE | ID: mdl-17341211

ABSTRACT

The paper entitled "Structurally reduced monosaccharide transporters in an evolutionary conserved red alga", which was published online on 7 March 2007, was withdrawn at the author's request.

6.
Int Rev Cytol ; 256: 1-34, 2007.
Article in English | MEDLINE | ID: mdl-17241903

ABSTRACT

Treatises on extremophiles are frequently focused on organisms belonging to the Archaea and Eubacteria kingdoms. However, a significant number of eukaryotes, both unicellular and multicellular, have evolved to live and thrive in extreme environments. Although less is known about eukaryotic life in extreme environments in comparison to prokaryotic extremophiles, advances in genomics and in comprehensive, high-throughput metabolic profiling techniques have provided new insight into the metabolic adaptations of eukaryotes living under extreme conditions. In this review, we will provide an overview of extremophilic life forms with emphasis on eukaryotes and we will compare metabolic adaptations in different eukaryotic extremophiles to identify generalities and specializations in adaptation to life under extreme conditions. Special emphasis will be devoted to the thermoacidophilic unicellular red alga Galdieria sulphuraria (Cyanidiaceae) as one example of a eukaryotic extremophile.


Subject(s)
Acclimatization/physiology , Eukaryotic Cells/metabolism , Metabolic Networks and Pathways , Animals , Autotrophic Processes , Eukaryota/metabolism , Genomics , Humans , Plants/metabolism
7.
Plant Physiol ; 137(2): 460-74, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15710685

ABSTRACT

Unicellular algae serve as models for the study and discovery of metabolic pathways, for the functional dissection of cell biological processes such as organellar division and cell motility, and for the identification of novel genes and gene functions. The recent completion of several algal genome sequences and expressed sequence tag collections and the establishment of nuclear and organellar transformation methods has opened the way for functional genomics approaches using algal model systems. The thermo-acidophilic unicellular red alga Galdieria sulphuraria represents a particularly interesting species for a genomics approach owing to its extraordinary metabolic versatility such as heterotrophic and mixotrophic growth on more than 50 different carbon sources and its adaptation to hot acidic environments. However, the ab initio prediction of genes required for unknown metabolic pathways from genome sequences is not trivial. A compelling strategy for gene identification is the comparison of similarly sized genomes of related organisms with different physiologies. Using this approach, candidate genes were identified that are critical to the metabolic versatility of Galdieria. Expressed sequence tags and high-throughput genomic sequence reads covering >70% of the G. sulphuraria genome were compared to the genome of the unicellular, obligate photoautotrophic red alga Cyanidioschyzon merolae. More than 30% of the Galdieria sequences did not relate to any of the Cyanidioschyzon genes. A closer inspection of these sequences revealed a large number of membrane transporters and enzymes of carbohydrate metabolism that are unique to Galdieria. Based on these data, it is proposed that genes involved in the uptake of reduced carbon compounds and enzymes involved in their metabolism are crucial to the metabolic flexibility of G. sulphuraria.


Subject(s)
Carbohydrate Metabolism , Rhodophyta/genetics , Rhodophyta/metabolism , Algal Proteins/genetics , Biological Transport, Active , Carrier Proteins/genetics , Cell Wall/metabolism , Genome , Mitochondria/metabolism , Plastids/metabolism , Species Specificity
8.
Plant Mol Biol ; 55(1): 17-32, 2004 May.
Article in English | MEDLINE | ID: mdl-15604662

ABSTRACT

When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degrees C. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria , 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria.


Subject(s)
Carbon/metabolism , Expressed Sequence Tags , Lipid A/biosynthesis , Plastids/metabolism , Rhodophyta/genetics , Algal Proteins/genetics , Amino Acid Sequence , Base Sequence , Biological Transport , DNA, Complementary/chemistry , DNA, Complementary/genetics , Energy Metabolism/genetics , Fatty Acids/metabolism , Gene Library , Hexokinase/genetics , Hydrogen-Ion Concentration , Lipid Metabolism , Molecular Sequence Data , Monosaccharide Transport Proteins/genetics , Oxygen Consumption , Phosphate Transport Proteins/genetics , Photosynthesis/genetics , Phylogeny , Rhodophyta/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Temperature
9.
Plant Physiol ; 128(1): 291-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11788774

ABSTRACT

The unicellular acidophilic red alga Galdieria sulphuraria is a facultative heterotroph with a complex uptake system for sugars and polyols, consisting of at least 14 transporters. Upon transfer to heterotrophic conditions, these transporters were induced simultaneously. Once induced, transporters for common hexoses and pentoses are apparently not down-regulated under heterotrophic conditions. Uptake of deoxysugars (FUC/Rha), however, was repressed by substrates metabolized via gluco-, galacto-, glycero-, or hexokinase, whereas substrates phosphorylated by xylulokinase had no effect. This indicates that several sugar kinases play a key role in sugar sensing. In contrast, polyol transporters were repressed only by glucose or its analogs but not by other sugars. This repression does not involve the activity of kinases. Most likely this type of glucose sensing is independent of metabolism and takes place prior to or during uptake. In its natural environment, these two different sensing mechanisms would enable the alga to utilize a mixture of different substrates in a most economic way by repressing dispensible transporters.


Subject(s)
Carbohydrate Metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Rhodophyta/metabolism , Carbon Radioisotopes , Fructose/metabolism , Galactokinase/metabolism , Glucokinase/metabolism , Glucose/metabolism , Glycerol Kinase/metabolism , Hexokinase/metabolism , Mannitol/metabolism , Mannose/metabolism , Methylglucosides/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Phosphorylation , Polymers/metabolism , Rhodophyta/enzymology , Rhodophyta/genetics , Sorbitol/metabolism , Sugar Alcohols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL